zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Galerkin boundary node method for biharmonic problems. (English) Zbl 1244.65175
Summary: A Galerkin boundary node method (GBNM) is developed in this paper for solving biharmonic problems. The GBNM combines an equivalent variational form of boundary integral formulations for governing equations with the moving least-squares approximations for construction of the trial and test functions. In this approach, only a nodal data structure on the boundary of a domain is required. In addition, boundary conditions can be implemented accurately and the system matrices are symmetric. The convergence of this method and numerical examples are given to show the efficiency.
MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
References:
[1]Hsiao, G. C.: Boundary element methods — an overview, Appl numer math 56, 1356-1369 (2006)
[2]Zhu, J.: Boundary element analysis for elliptic boundary value problems, (1991)
[3]Brenner, S. C.; Scott, L. R.: The mathematical theory of finite element methods, (1994)
[4]Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P.: Meshless methods: an overview and recent developments, Comput methods appl mech eng 139, 3-47 (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[5]Liu, G. R.: Meshfree methods — moving beyond the finite element method, (2002)
[6]Krysl, P.; Belytschko, T.: Element-free Galerkin method: convergence of the continuous and discontinuous shape functions, Comput methods appl mech eng 148, 257-277 (1997) · Zbl 0918.73125 · doi:10.1016/S0045-7825(96)00007-2
[7]Han, W.; Meng, X.: Error analysis of the reproducing kernel particle method, Comput methods appl mech eng 190, 6157-6181 (2001) · Zbl 0992.65119 · doi:10.1016/S0045-7825(01)00214-6
[8]Liu, W. K.; Li, S.; Belytschko, T.: Moving least-square reproducing kernel methods (I) methodology and convergence, Comput methods appl mech eng 143, 113-154 (1997) · Zbl 0883.65088 · doi:10.1016/S0045-7825(96)01132-2
[9]Cheng, R.; Cheng, Y.: Error estimates for the finite point method, Appl numer math 58, 884-898 (2008) · Zbl 1145.65086 · doi:10.1016/j.apnum.2007.04.003
[10]Duarte, C. A.; Oden, J. T.: H – p clouds — an h – p meshless method, Numer methods partial differ equat 12, 675-705 (1996) · Zbl 0869.65069 · doi:10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
[11]Mukherjee, Y. X.; Mukherjee, S.: The boundary node method for potential problems, Int J num methods eng 40, 797-815 (1997) · Zbl 0885.65124 · doi:10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-#
[12]Kothnur, V. S.; Mukherjee, S.; Mukherjee, Y. X.: Two-dimensional linear elasticity by the boundary node method, Int J solids struct 36, 1129-1147 (1999) · Zbl 0937.74074 · doi:10.1016/S0020-7683(97)00363-6
[13]Zhang, J.; Yao, Z.; Li, H.: A hybrid boundary node method, Int J num methods eng 53, 751-763 (2002)
[14]Zhang, J.; Tanaka, M.; Matsumoto, T.: Meshless analysis of potential problems in three dimensions with the hybrid boundary node method, Int J num methods eng 59, 1147-1168 (2004) · Zbl 1048.65121 · doi:10.1002/nme.904
[15]Miao, Y.; Wang, Y.: Development of hybrid boundary node method in two dimensional elasticity, Eng anal bound elem 29, 703-712 (2005) · Zbl 1182.74229 · doi:10.1016/j.enganabound.2005.02.009
[16]Zhang, J.; Yao, Z.: Meshless regular hybrid boundary node method, Comput model eng sci 2, 307-318 (2001) · Zbl 0991.65129
[17]Zhang, J.; Yao, Z.: The regular hybrid boundary node method for three-dimensional linear elasticity, Eng anal bound elem 28, 525-534 (2004) · Zbl 1130.74492 · doi:10.1016/S0955-7997(03)00105-X
[18]Liu, G. R.; Gu, Y. T.: Boundary meshfree methods based on the boundary point interpolation methods, Eng anal bound elem 28, 475-487 (2004) · Zbl 1130.74466 · doi:10.1016/S0955-7997(03)00101-2
[19]Li, G.; Aluru, N. R.: Boundary cloud method: a combined scattered point/boundary integral approach for boundary-only analysis, Comput meth appl mech eng 191, 2337-2370 (2002) · Zbl 0995.65124 · doi:10.1016/S0045-7825(01)00415-7
[20]Chen, W.; Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique, Comput math appl 43, 379-391 (2002) · Zbl 0999.65142 · doi:10.1016/S0898-1221(01)00293-0
[21]Chen, W.: Meshfree boundary particle method applied to Helmholtz problems, Eng anal bound elem 26, 577-581 (2002) · Zbl 1013.65128 · doi:10.1016/S0955-7997(02)00028-0
[22]Lancaster, P.; Salkauskas, K.: Surface generated by moving least squares methods, Math comput 37, 141-158 (1981) · Zbl 0469.41005 · doi:10.2307/2007507
[23]Lious, J. L.; Magenes, E.: Non-homogeneous boundary value problems and applications, (1972)
[24]Hsiao, G. C.; Maccamy, R. C.: Solution of boundary value problems by integral equations of the first kind, SIAM rev 15, 687-705 (1973) · Zbl 0235.45006 · doi:10.1137/1015093
[25]Nedelec JC. Approximation des équations intégrales en mécanique et en physique. Cours de l’Ecole d’été, CEA-IRIA-EDF; 1977.
[26]Zhu, J.: Integral equation solutions for finite and infinite plate, Boundary elements VΠ (1985)
[27]Kufner, A.: Weighted Sobolev spaces, (1985)
[28]Girault, V.; Raviart, P. A.: Finite element approximation of the Navier – Stokes equations, (1979)
[29]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[30]Gaspar, C.: Multi-level biharmonic and bi-Helmholtz interpolation with application to the boundary element method, Eng anal bound elem 30, 809-817 (2006)
[31]Jaswon, M. A.; Maiti, M.; Symm, G. T.: Numerical biharmonic analysis and some applications, Int J solids struct 3, 309-332 (1967) · Zbl 0148.19403 · doi:10.1016/0020-7683(67)90032-7
[32]Miao, Y.; Wang, Y.: Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method, Appl math mech 27, 673-681 (2006) · Zbl 1178.74183 · doi:10.1007/s10483-006-0514-z