zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1244.65243
Summary: We present a method to solve nonlinear Volterra-Fredholm-Hammerstein integral equations in terms of Bernstein polynomials. Properties of these polynomials and of the operational matrix of integration together with the product operational matrix are first presented. These properties are then utilized to transform the integral equation to a matrix equation which corresponds to a system of nonlinear algebraic equations with unknown Bernstein coefficients. The method is computationally very simple and attractive and numerical examples illustrate the efficiency and accuracy of the method.
MSC:
65R20Integral equations (numerical methods)
45B05Fredholm integral equations
45D05Volterra integral equations
45G10Nonsingular nonlinear integral equations
References:
[1]Voitovich, N. N.; Reshnyak, O. O.: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays, BSUAE J appl electron 2, No. 1, 43-52 (1999)
[2]Jaswon, M. A.; Symm, G. T.: Integral equation methods in potential theory and elastostatics, (1977)
[3]Schiavane, P.; Constanda, C.; Mioduchowski, A.: Integral methods in science and engineering, (2002)
[4]Abdou, M. A.: On asymptotic methods for Fredholm – Volterra integral equation of the second kind in contact problems, J comput appl math 154, 431-446 (2003) · Zbl 1019.45003 · doi:10.1016/S0377-0427(02)00862-2
[5]Bloom, F.: Asymptotic bounds for solutions to a system of damped integro – differential equations of electromagnetic theory, J math anal appl 73, 524-542 (1980) · Zbl 0434.45018 · doi:10.1016/0022-247X(80)90297-8
[6]Jiang, S.; Rokhlin, V.: Second kind integral equations for the classical potential theory on open surface II, J comput phys 195, 1-16 (2004) · Zbl 1050.65118 · doi:10.1016/j.jcp.2003.10.001
[7]Semetanian, B. J.: On an integral equation for axially symmetric problem in the case of an elastic body containing an inclusion, J comput appl math 200, 12-20 (2007)
[8]Maleknejad, K.; Hashemizadeh, E.; Ezzati, R.: A new approach to the numerical solution of Volterra integral equations by using bernsteins approximation, Commun nonlinear sci numer simulat 16, 647-655 (2011) · Zbl 1221.65334 · doi:10.1016/j.cnsns.2010.05.006
[9]Doha, E. H.; Bhrawy, A. H.; Saker, M. A.: Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations, Appl math lett 24, 559-565 (2011)
[10]Mandal, B. N.; Bhattacharya, S.: Numerical solution of some classes of integral equations using Bernstein polynomials, Appl math comput 190, 1707-1716 (2007) · Zbl 1122.65416 · doi:10.1016/j.amc.2007.02.058
[11]Rivlin, T. J.: An introduction to the approximation of functions, (1969) · Zbl 0189.06601
[12]Yousefi, S. A.; Behroozifar, M.: Operational matrices of Bernstein polynomials and their applications, Int J syst sci 41, No. 6, 709-716 (2010) · Zbl 1195.65061 · doi:10.1080/00207720903154783
[13]Marzban, H. R.; Tabrizidooz, H. R.; Razzaghi, M.: A composite collocation method for the nonlinear mixed Volterra – Fredholm – Hammerstein integral equations, Commun nonlinear sci numer simulat 16, 1186-1194 (2011) · Zbl 1221.65340 · doi:10.1016/j.cnsns.2010.06.013
[14]Ordokhani, Y.: Solution of nonlinear Volterra – Fredholm – Hammerstein integral equations via rationalized Haar functions, Appl math comput 180, 436-443 (2006) · Zbl 1102.65141 · doi:10.1016/j.amc.2005.12.034
[15]Maleknejad, K.; Almasieh, H.; Roodaki, M.: Triangular functions (TF) method for the solution of nonlinear Volterra – Fredholm integral equations, Commun nonlinear sci numer simulat 15, 3293-3298 (2010) · Zbl 1222.65147 · doi:10.1016/j.cnsns.2009.12.015
[16]Mahmoudi, Y.: Taylor polynomial solution of non-linear Volterra – Fredholm integral equation, Int J comput math 82, No. 7, 881-887 (2005) · Zbl 1075.65152 · doi:10.1080/00207160512331331110
[17]Kreyszig, E.: Introductory functional analysis with applications, (1978)
[18]Snyder, M. A.: Chebychev methods in numerical approximation, (1996)
[19]Golberg, M. A.; Chen, C. S.: Discrete projection methods for integral equations, Southampton: comput mech publicat, 178-306 (1997)
[20]Kalman, R. E.; Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems, (1969)
[21]Kumar, S.; Sloan, I. H.: A new collocation-type method for Hammerstein integral equations, J math comput 48, 123-129 (1987) · Zbl 0616.65142 · doi:10.2307/2007829
[22]Ordokhani, Y.; Razzaghi, M.: Solution of nonlinear Volterra – Fredholm – Hammerstein integral equations via a collocation method and rationalized Haar functions, Appl math lett 21, 4-9 (2008) · Zbl 1133.65117 · doi:10.1016/j.aml.2007.02.007