zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimizing reliability and service parts logistics for a time-varying installed base. (English) Zbl 1244.90076
Summary: Performance based contracting (PBC) emerges as a new after-sales service practice to support the operation and maintenance of capital equipment or systems. Under the PBC framework, the goal of the study is to increase the system operational availability while minimizing the logistics footprint through the design for reliability. We consider the situation where the number of installed systems randomly increases over the planning horizon, resulting in a non-stationary maintenance and repair demand. Renewal equation and Poisson process are used to estimate the aggregate fleet failures. We propose a dynamic stocking policy that adaptively replenishes the inventory to meet the time-varying parts demand. An optimization model is formulated and solved under a multi-phase adaptive inventory control policy. The study provides theoretical insights into the performance-driven service operation in the context of changing system fleet size due to new installations. Trade-offs between reliability design and inventory level are examined and compared in various shipment scenarios. Numerical examples drawn from semiconductor equipment industry are used to demonstrate the applicability and the performance of the proposed method.
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
90B06Transportation, logistics
90B05Inventory, storage, reservoirs
[1]Berkowitz, D., Gupta, J., Simpson, J.T., McWilliams, J.B. 2004. Defining and implementing performance-based logistics in government. Defense AR Journal. lt;http://findarticles.com/p/articles/mim0SVI/is311/ain13821991/gt;.
[2]Chen, M. S.: On the computational complexity of reliability redundancy allocation in a series system, Operations research letters 11, No. 5, 309-315 (1992) · Zbl 0767.90021 · doi:10.1016/0167-6377(92)90008-Q
[3]Coit, D. W.; Jin, T.; Wattanapongsakorn, N.: System optimization considering component reliability estimation uncertainty: multi-criteria approach, IEEE transactions on reliability 53, No. 3, 369-380 (2004)
[4]Diaz, A.; Fu, M.: Models for multi-echelon repairable item inventory systems with limited repair capacity, European journal of operational research 97, No. 3, 480-492 (1997) · Zbl 0927.90003 · doi:10.1016/S0377-2217(96)00279-2
[5]Gadiesh, O.; Gilbert, J. L.: Profit pools: a fresh look at strategy, Harvard business review 76, No. 3, 139-147 (1998)
[6]Garvey, L., 2005. Navy Success with PBL. DAU/PMI Conference, Transforming DoD Logistics.
[7]Graves, S.: A multi-echelon inventory model for a repairable item with one-to-one replenishment, Management science 31, No. 10, 1247-1256 (1985) · Zbl 0601.90035 · doi:10.1287/mnsc.31.10.1247
[8]Graves, S. C.; Willems, S. P.: Strategic inventory placement in supply chains: nonstationary demand, Manufacturing & service operations management 10, No. 2, 278-287 (2008)
[9]Gupta, O. K.; Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming, Management science 31, No. 12, 1533-1546 (1985) · Zbl 0591.90065 · doi:10.1287/mnsc.31.12.1533
[10]Huang, H. Z.; Liu, H. J.; Murthy, D. N. P.: Optimal reliability, warranty and price for new products, IIE transactions 39, No. 8, 819-827 (2007)
[11]Jalil, M. N.; Zuidwijk, R. A.; Fleischmann, M.; Van Nunen, A. E. E. Jo: Spare parts logistics and installed base information, Journal of the operational research society 62, 442-457 (2011)
[12]Jin, T.; Gonigunta, L.: Weibull and gamma renewal approximation using generalized exponential functions, Communication in statistics-B: simulation and computation 38, No. 1, 154-171 (2009) · Zbl 1163.60041 · doi:10.1080/03610910802440327
[13]Jin, T.; Liao, H.: Spare parts inventory control considering stochastic growth of an installed base, Computers & industrial engineering 56, No. 1, 452-460 (2009)
[14]Kennedy, W. J.; Patterson, J. W.; Fredenhall, L. D.: An overview of recent literature on spare parts inventories, International journal of production economics 76, No. 2, 210-215 (2002)
[15]Kim, S. H.; Cohen, M. A.; Netessine, S.: Performance contracting in after-sales service supply chains, Management science 53, No. 12, 1843-1858 (2007) · Zbl 1232.90117 · doi:10.1287/mnsc.1070.0741
[16]Kratz, L., 2005. Logistics Transformation. In: Mid-Atlantic Logistics Conference. International Society of Logistics.
[17]Kuo, W.; Wan, R.: Recent advances in optimal reliability allocation, IEEE transactions on systems, man, and cybernetics 37, No. 2, 143-156 (2007)
[18]Marseguerra, M.; Zio, E.; Podofillini, L.: Multi-objective spare parts allocation by means of genetic algorithms and Monte Carlo simulations, Reliability engineering and system safety 87, No. 3, 325-335 (2005)
[19]Mettas, A. 2000. Reliability allocation and optimization for complex systems. In: Proceedings of Annual Reliability and Maintainability Symposium, pp. 216 – 221.
[20]Muckstadt, J. A.: Analysis and algorithms for service parts supply chains, (2005)
[21]Murthy, D. N. P.; Solem, O.; Roren, T.: Product warranty logistics: issues and challenges, European journal of operational research 156, No. 1, 110-126 (2004) · Zbl 1045.90024 · doi:10.1016/S0377-2217(02)00912-8
[22]Nowicki, D.; Kumar, U. D.; Steudel, H. J.; Verma, D.: Spares provisioning under performance-based logistics contract: profit-centric approach, The journal of the operational research society 59, No. 3, 342-352 (2008) · Zbl 1145.90326 · doi:10.1057/palgrave.jors.2602327
[23]Oliva, R.; Kallenberg, R.: Managing the transition from products to services, International journal of service industry management 14, No. 2, 160-172 (2003)
[24]Öner, K. B.; Kiesmüller, G. P.; Van Houtum, G. J.: Optimization of component reliability in the design phase of capital goods, European journal of operational research 205, No. 3, 615-624 (2010)
[25]Randall, W. S.; Pohlen, T. L.; Hanna, J. B.: Evolving a theory of performance based logistics using insights from service dominant logic, Journal of business logistics 31, No. 2, 35-62 (2010)
[26]Sana, S. S.: A production-inventory model in an imperfect production process, European journal of operational research 200, No. 2, 451-464 (2010) · Zbl 1177.90027 · doi:10.1016/j.ejor.2009.01.041
[27]Sarkar, B.; Chaudhuri, K.; Sana, S. S.: A stock-dependent inventory model in an imperfect production process, International journal of procurement management 3, No. 4, 361-378 (2010)
[28]Sherbrooke, C. C.: METRIC: a multi-echelon technique for recoverable item control, Operations research 16, No. 1, 122-141 (1968)
[29]Sherbrooke, C. C.: Multiechelon inventory systems with lateral supply, Naval research logistics 39, No. 1, 29-40 (1992) · Zbl 0825.90339 · doi:10.1002/1520-6750(199202)39:1<29::AID-NAV3220390103>3.0.CO;2-L
[30]Xie, M.: On the solution of renewal-type integral equations, Communications in statistics-B: simulation and computation 18, No. 1, 281-293 (1989)