zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evasion from many pursuers in simple motion differential game with integral constraints. (English) Zbl 1244.91016
Summary: We study a two dimensional evasion differential game with several pursuers and one evader with integral constraints on control functions of players. Assuming that the total resource of the pursuers does not exceed that of the evader, we solve the game by presenting explicit strategy for the evader which guarantees evasion.
MSC:
91A24Positional games
49N75Pursuit and evasion games in calculus of variations
References:
[1]Chernous’ko, F. L.; Zak, V. L.: On differential games of evasion from many pursuers, Journal of optimization theory and applications 46, No. 4, 461-470 (1985)
[2]Chernous’ko, F. L.: A problem of evasion from many pursuers, Prikladnaya matematika I mekhanika 40, No. 1, 14-24 (1976) · Zbl 0359.90083 · doi:10.1016/0021-8928(76)90105-2
[3]Chernous’ko, F. L.: Optimal control for a class of systems subjected to disturbances, Journal of applied mathematics and mechanics 68, 503-510 (2004) · Zbl 1089.49002 · doi:10.1016/j.jappmathmech.2004.07.003
[4]Erickson, G. M.: A differential game model of the marketing-operations interface, European journal of operational research 211, 394-402 (2011)
[5]Fibich, G.; Gavious, A.; Lowengart, O.: Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Operations research 51, 721-734 (2003) · Zbl 1165.91325 · doi:10.1287/opre.51.5.721.16758
[6]Friedman, A.: Differential games, (1971) · Zbl 0231.90067
[7]Friesz, T. L.: Dynamic optimization and differential games, International series in operations research & management science (2009)
[8]Ho, Y. C.; Bryson, A. E.; Baron, S.: Differential games and optimal pursuit – evasion stategies, IEEE transactions on automatic control AC-10, 385-389 (1965)
[9]Isaacs, R.: Differential games, (1965) · Zbl 0125.38001
[10]Ivanov, R. P.: Simple pursuit – evasion on a compact set, Doklady akademii nauk SSSR 254, No. 6, 1318-1321 (1980)
[11]Jørgensen, S.: Optimal production, purchasing and pricing: A differential game approach, European journal of operational research 24, No. 1, 64-76 (1986) · Zbl 0582.90047 · doi:10.1016/0377-2217(86)90011-1
[12]Krasovskii, N. N.; Subbotin, A. I.: Game-theoretical control problems, (1988) · Zbl 0649.90101
[13]Petrov, N.: Simple pursuit of rigidly connected evaders, Avtomarika I telemekhanika 12, 89-95 (1997)
[14]L.S. Pontryagin, Izbrannye trudy (Selected Works), Moscow, Russia, 1988.
[15]Pshenichnii, B. N.: Simple pursuit by several objects, Cybernetics and systems analysis 12, No. 3, 484-485 (1976)
[16]Satimov, N. Yu.; Rikhsiev, B. B.; Khamdamov, A. A.: On a pursuit problem for n-person linear differential and discrete games with integral constraints, Mathematics of the USSR-sbornik 118, No. 4, 456-469 (1982) · Zbl 0575.90108 · doi:10.1070/SM1983v046n04ABEH002946
[17]Vagin, D.; Petrov, N.: The problem of the pursuit of a group of rigidly coordinated evaders, Journal of computer and systems sciences international 5, 75-79 (2001) · Zbl 1078.49507
[18]Wie, B. W.: A differential game approach to the dynamic mixed behavior traffic network equilibrium problem, European journal of operational research 83, 117-136 (1995) · Zbl 0903.90061 · doi:10.1016/0377-2217(93)E0242-P
[19]Yeung, D. W. K.: A class of differential games which admits a feedback solution with linear value functions, European journal of operational research 107, 737-754 (1998) · Zbl 0942.91013 · doi:10.1016/S0377-2217(97)00093-3
[20]Zak, V. L.: On a problem of evading many pursuers, Pmm 43, No. 3, 456-465 (1978) · Zbl 0434.90117 · doi:10.1016/0021-8928(79)90097-2