zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive backstepping fuzzy control based on type-2 fuzzy system. (English) Zbl 1244.93084
Summary: A novel indirect adaptive backstepping control approach based on type-2 fuzzy system is developed for a class of nonlinear systems. This approach adopts type-2 fuzzy system instead of type-1 fuzzy system to approximate the unknown functions. With type-reduction, the type-2 fuzzy system is replaced by the average of two type-1 fuzzy systems. Ultimately, the adaptive laws, by means of backstepping design technique, will be developed to adjust the parameters to attenuate the approximation error and external disturbance. According to stability theorem, it is proved that the proposed Type-2 Adaptive Backstepping Fuzzy Control (T2ABFC) approach can guarantee global stability of closed-loop system and ensure all the signals bounded. Compared with existing Type-1 Adaptive Backstepping Fuzzy Control (T1ABFC), as the advantages of handling numerical and linguistic uncertainties, T2ABFC has the potential to produce better performances in many respects, such as stability and resistance to disturbances. Finally, a biological simulation example is provided to illustrate the feasibility of control scheme proposed in this paper.
MSC:
93C42Fuzzy control systems
93C40Adaptive control systems