zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of switched positive linear systems with average dwell time switching. (English) Zbl 1244.93129
Summary: In this paper, the stability analysis problem for a class of Switched Positive Linear Systems (SPLSs) with average dwell time switching is investigated. A Multiple Linear Copositive Lyapunov Function (MLCLF) is first introduced, by which the sufficient stability criteria in terms of a set of linear matrix inequalities, are given for the underlying systems in both continuous-time and discrete-time contexts. The stability results for the SPLSs under arbitrary switching, which have been previously studied in the literature, can be easily obtained by reducing MLCLF to the common linear copositive Lyapunov function used for the system under arbitrary switching those systems. Finally, a numerical example is given to show the effectiveness and advantages of the proposed techniques.
MSC:
93D05Lyapunov and other classical stabilities of control systems
15B48Positive matrices and their generalizations; cones of matrices
93C05Linear control systems
References:
[1]Benvenuti, L.; Farina, L.: A tutorial on the positive realization problem, IEEE transactions on automatic control 49, No. 5, 651-664 (2004)
[2]Cui, C.; Long, F.; Li, C.: Disturbance attenuation for switched system with continuous-time and discrete-time subsystems: state feedback case, ICIC express letters 4, No. 1, 205-212 (2010)
[3]De Leenheer, P.; Aeyels, D.: Stabilization of positive linear systems, Systems control letters 44, No. 4, 259-271 (2001) · Zbl 0986.93059 · doi:10.1016/S0167-6911(01)00146-3
[4]Ding, X.; Shu, L.; Liu, X.: On linear copositive Lyapunov functions for switched positive systems, Journal of the franklin institute 348, 2099-2107 (2011) · Zbl 1231.93058
[5]Fainshil, L.; Margaliot, M.; Chigansky, P.: On the stability of positive linear switched systems under arbitrary switching laws, IEEE transactions on automatic control 54, No. 4, 897-899 (2009)
[6]Farina, L.; Rinaldi, S.: Positive linear systems, (2000) · Zbl 0988.93002
[7]Feng, J.; Lam, J.; Li, P.; Shu, Z.: Decay rate constrained stabilization of positive systems using static output feedback, International journal of robust and nonlinear control 21, 44-54 (2011) · Zbl 1207.93080 · doi:10.1002/rnc.1575
[8]Fornasini, E.; Valcher, M. E.: Linear copositive Lyapunov functions for continuous-time positive switched systems, IEEE transactions on automatic control 55, No. 8, 1933-1937 (2010)
[9]Gurvits, L.; Shorten, R.; Mason, O.: On the stability of switched positive linear systems, IEEE transactions on automatic control 52, No. 6, 1099-1103 (2007)
[10]Jadbabaie, A.; Lin, J.; Morse, A. S.: Co-ordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[11]Kaczorek, T.: Positive 1D and 2D systems, (2002)
[12]Knorn, F.; Mason, O.; Shorten, R. N.: On linear co-positive Lyapunov functions for sets of linear positive systems, Automatica 45, No. 8, 1943-1947 (2009) · Zbl 1185.93122 · doi:10.1016/j.automatica.2009.04.013
[13]Liberzon, D.: Switching in systems and control, (2003)
[14]Li, P.; Lam, J.; Wang, Z.; Date, P.: Positivity-preserving H model reduction for positive systems, Automatica 47, No. 7, 1504-1511 (2011) · Zbl 1220.93036 · doi:10.1016/j.automatica.2011.02.032
[15]Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, No. 2, 308-322 (2009)
[16]Liu, X.; Dang, C.: Stability analysis of positive switched linear systems with delays, IEEE transactions on automatic control 56, No. 7, 1684-1690 (2011)
[17]Margaliot, M.; Branicky, M. S.: Nice reachability for planar bilinear control systems with applications to planar linear switched systems, IEEE transactions on automatic control 54, No. 4, 900-905 (2009)
[18]Mason, O., & Shorten, R. (2003). A conjecture on the existence of common quadratic Lyapunov functions for positive linear systems. In Proc. ameri. contr. conf. (pp. 4469–4470).
[19]Mason, O., & Shorten, R. (2004). Some results on the stability of positive switched linear systems. In Proc. of the 43rd IEEE conference on decision and control (pp. 4601–4606). Atlantis, Bahamas.
[20]Mason, O.; Shorten, R.: On linear copositive Lyapunov functions and the stability of switched positive linear systems, IEEE transactions on automatic control 52, No. 7, 1346-1349 (2007)
[21]Rami, M. A.: Solvability of static output-feedback stabilization for LTI positive systems, Systems control letters 60, 704-708 (2011) · Zbl 1226.93116 · doi:10.1016/j.sysconle.2011.05.007
[22]Shi, P.; Xia, Y.; Liu, G.; Rees, D.: On designing of sliding mode control for stochastic jump systems, IEEE transactions on automatic control 51, No. 1, 97-103 (2006)
[23]Sun, X.; Wang, W.; Liu, G.; Zhao, J.: Stability analysis for linear switched systems with time-varying delay, IEEE transactions on circuits and systems II: Analog and digital signal processing 38, No. 2, 528-533 (2008)
[24]Sun, X.; Zhao, J.; Hill, D.: Stability and L2-gain analysis for switched delay systems: a delay-dependent method, Automatica 42, No. 10, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[25]Wang, D.; Wang, W.; Shi, P.: Delay-dependent exponential stability for switched delay systems, Optimal control applications and methods 30, No. 4, 383-397 (2009)
[26]Wang, D.; Wang, W.; Shi, P.: Exponential H filtering for switched linear systems with interval time-varying delay, International journal of robust and nonlinear control 19, No. 5, 532-551 (2009) · Zbl 1160.93328 · doi:10.1002/rnc.1334
[27]Xu, S.; Chen, T.: Robust H control for uncertain discrete-time stochastic bilinear systems with Markovian switching, International journal of robust and nonlinear control 15, No. 5, 201-217 (2005) · Zbl 1078.93025 · doi:10.1002/rnc.981
[28]Xue, X.; Li, Z.: Asymptotic stability analysis of a kind of switched positive linear discrete systems, IEEE transactions on automatic control 55, No. 9, 2198-2203 (2010)
[29]Zhai, G.; Matsune, I.; Imae, J.; Kobayashi, T.: A note on multiple Lyapunov functions and stability condition for switched and hybrid systems, Int. J. Innovative computing, information and control 5, No. 5, 1189-1200 (2009)
[30]Zhang, L.; Gao, H.: Asynchronously switched control of switched linear systems with average Dwell time, Automatica 46, No. 5, 953-958 (2010) · Zbl 1191.93068 · doi:10.1016/j.automatica.2010.02.021
[31]Zhang, L.; Jiang, B.: Stability of a class of switched linear systems with uncertainties and average Dwell time switching, Int. J. Innovative computing, information and control 6, No. 2, 667-676 (2010)
[32]Zhang, L.; Shi, P.: Stability, l2-gain and asynchronous H control of discrete-time switched systems with average Dwell time, IEEE transactions on automatic control 54, No. 9, 2193-2200 (2009)
[33]Zhao, J.; Hill, D.: On stability, L2-gain and H control for switched systems, Automatica 44, No. 5, 1220-1232 (2008)
[34]Zhao, X.; Zeng, Q.: Delay-dependent H performance analysis and filtering for Markovian jump systems with interval time-varying-delays, International journal of adaptive control and signal processing 24, No. 8, 633-642 (2010) · Zbl 1204.93123 · doi:10.1002/acs.1156