zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conservation laws for a super G-J hierarchy with self-consistent sources. (English) Zbl 1245.37011
Summary: Based on a well known super Lie algebra, a super integrable system is presented. Then, the super G-J hierarchy with self-consistent sources are obtained. Furthermore, we establish the infinitely many conservation laws for the integrable super G-J hierarchy. The methods derived by us can be generalized to other nonlinear equations hierarchies with self-consistent sources.
MSC:
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
References:
[1]Ma, W. X.; He, J. S.; Qin, Z. Y.: J math phys, J math phys 49, 033511 (2008)
[2]Dong, H. H.; Wang, X. Z.: Commun nonlinear sci numer simul, Commun nonlinear sci numer simul 14, 4071 (2009)
[3]Yang, H. X.; Sun, Y. P.: Int J theor phys, Int J theor phys 49, 349 (2010)
[4]Wang, X. Z.; Dong, H. H.: Mod phys lett B, Mod phys lett B 23, 3387 (2009)
[5]Li, Z.: Mod phys lett B, Mod phys lett B 23, 2907 (2009)
[6]Tao, S. X.; Xia, T. C.: Chin phys lett, Chin phys lett 27, 040202 (2010)
[7]Tao, S. X.; Xia, T. C.: Chin phys B, Chin phys B 19, 070202 (2010)
[8]He, H. J.; Yu, J.; Cheng, Y.: Mod phys lett B, Mod phys lett B 22, 275 (2008)
[9]Yu, J.; He, H. J.; Ma, W. X.; Cheng, Y.: Chin ann math, Chin ann math 31B, 361 (2010)
[10]Ge, J. Y.; Xia, T. C.: Commun theor phys, Commun theor phys 54, 1 (2010)
[11]Yu, F. J.: Phys lett A, Phys lett A 372, 6613 (2008)
[12]Xia, T. C.: Chinese phys B, Chinese phys B 19, 100303 (2010)
[13]Li, L.: Phys lett A, Phys lett A 375, 1402 (2011)
[14]Miua, R. M.; Gardner, C. S.; Kruskal, M. D.: J math phys, J math phys 9, 1204 (1968)
[15]Wadati, M.; Sanuki, H.; Konno, K.: Prog theo phys, Prog theo phys 53, 419 (1975)
[16]Tu, G. Z.: Northeastern math J, Northeastern math J 6, 26 (1990)
[17]Tao, S. X.; Xia, T. C.: Commun nonlinear sci numer simul, Commun nonlinear sci numer simul 16, 127 (2011)