×

Browder’s convergence theorem for multivalued mappings without endpoint condition. (English) Zbl 1245.54042

A geodesic path joining \(x,y\) in a metric space \((X,d)\) is an isometric mapping \(c:[0,1]\to X\) such that \(c(0)=x\) and \(c(1)=y\). The space is said to be geodesic if any two points can be joined by a geodesic path. It is said to be an \(\mathbb{R}\)-tree if for any \(x,y\in X\) there is a unique geodesic path from \(x\) to \(y\) denoted by \([x,y]\) such that the following condition holds: if \([y,x]\cap[x,z]=\{x\}\) then \([y,x]\cup[x,z]=[y,z]\). Let then \(E\) be a nonempty closed convex subset of a complete \(\mathbb{R}\)-tree \(X\) and let \(T\) be a multivalued nonexpansive mapping from \(E\) into the nonempty compact convex subsets of \(E\). Choose \(u\in E\) and define \(f:E\to E\) by defining \(f(x)\) as the nearest point to \(u\) in \(T(x)\). For \(s\in(0,1)\) denote by \(t_s(x)\) the point \(z\in[u,f(x)]\) that satisfies \(d(u,z)=s\). Finally, let \(x_s\) be the unique fixed point of \(t_s\). The authors prove that \(T\) has a fixed point if and only if \(\{x_s\}\) remains bounded as \(s\to0\). In this case \((x_s)\) converges to the unique fixed point of \(T\) that is nearest to \(u\).

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems

Citations:

Zbl 1123.47047
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aksoy, A. G.; Khamsi, M. A., A selection theorem in metric trees, Proc. Amer. Math. Soc., 134, 2957-2966 (2006) · Zbl 1102.54022
[2] Aleomraninejad, S. M.A.; Rezapour, Sh.; Shahzad, N., Some fixed point results on a metric space with a graph, Topology Appl., 159, 659-663 (2012) · Zbl 1237.54042
[3] Amini-Harandi, A.; Farajzadeh, A. P., Best approximation, coincidence and fixed point theorems for set-valued maps in \(R\)-trees, Nonlinear Anal.: TMA, 71, 1649-1653 (2009) · Zbl 1179.54050
[4] Bridson, M.; Haefliger, A., Metric Spaces of Non-Positive Curvature (1999), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0988.53001
[5] Browder, F. E., Convergence of approximants to fixed points of nonexpansive mappings in Banach spaces, Arch. Ration. Mech. Anal., 24, 82-90 (1967) · Zbl 0148.13601
[6] Dhompongsa, S.; Kaewkhao, A.; Panyanak, B., On Kirkʼs strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces, Nonlinear Anal.: TMA, 75, 459-468 (2012) · Zbl 1443.47062
[7] Dhompongsa, S.; Kirk, W. A.; Panyanak, B., Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8, 35-45 (2007) · Zbl 1120.47043
[8] Dhompongsa, S.; Kirk, W. A.; Sims, B., Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal.: TMA, 65, 762-772 (2006) · Zbl 1105.47050
[9] Dhompongsa, S.; Panyanak, B., On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56, 2572-2579 (2008) · Zbl 1165.65351
[10] Espinola, R.; Kirk, W. A., Fixed point theorems in \(R\)-trees with applications to graph theory, Topology Appl., 153, 1046-1055 (2006) · Zbl 1095.54012
[11] Goebel, K., On a fixed point theorem for multivalued nonexpansive mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A Math., 29, 69-72 (1975) · Zbl 0365.47032
[12] Halpern, B., Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73, 957-961 (1967) · Zbl 0177.19101
[13] Jung, J. S., Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal.: TMA, 66, 2345-2354 (2007) · Zbl 1123.47047
[14] Kim, T. H.; Jung, J. S., Approximating fixed points of nonlinear mappings in Banach spaces, Ann. Univ. Mariae Curie-Sklodowska Sect. A Math., 51, 149-165 (1997) · Zbl 1012.47034
[15] Kirk, W. A., Fixed point theorems in CAT(0) spaces and \(R\)-trees, Fixed Point Theory Appl., 2004, 309-316 (2004) · Zbl 1089.54020
[16] Lim, T. C., A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space, Bull. Amer. Math. Soc., 80, 1123-1126 (1974) · Zbl 0297.47045
[17] Lopez, G.; Xu, H. K., Remarks on multivalued nonexpansive mappings, Soochow J. Math., 21, 107-115 (1995) · Zbl 0826.47037
[18] Markin, J. T., Fixed points for generalized nonexpansive mappings in \(R\)-trees, Comput. Math. Appl., 62, 4614-4618 (2011) · Zbl 1236.47055
[19] Markin, J. T., Fixed points, selections and best approximation for multivalued mappings in \(R\)-trees, Nonlinear Anal.: TMA, 67, 2712-2716 (2007) · Zbl 1128.47052
[20] Nadler, S. B., Multi-valued contraction mappings, Pacific J. Math., 30, 475-487 (1969) · Zbl 0187.45002
[21] Piatek, B., Best approximation of coincidence points in metric trees, Ann. Univ. Mariae Curie-Sklodowska Sect. A Math., 62, 113-121 (2008) · Zbl 1182.54055
[22] Pietramala, P., Convergence of approximating fixed point sets for multivalued nonexpansive mappings, Comment. Math. Univ. Carolin., 32, 697-701 (1991) · Zbl 0756.47039
[23] Saejung, S., Halpernʼs iteration in CAT(0) spaces, Fixed Point Theory Appl., 2010 (2010), Article ID 471781, 13 pp
[24] Sahu, D. R., Strong convergence theorems for nonexpansive type and non-self multi-valued mappings, Nonlinear Anal.: TMA, 37, 401-407 (1999) · Zbl 0938.47039
[25] Shahzad, N., Fixed point results for multimaps in CAT(0) spaces, Topology Appl., 156, 997-1001 (2009) · Zbl 1175.47049
[26] Shahzad, N.; Zegeye, H., Strong convergence results for nonself multimaps in Banach spaces, Proc. Amer. Math. Soc., 136, 539-548 (2008) · Zbl 1135.47054
[27] Song, Y.; Cho, Y. J., Iterative approximations for multivalued nonexpansive mappings in reflexive Banach spaces, Math. Inequal. Appl., 12, 611-624 (2009) · Zbl 1183.47073
[28] Tits, J., A Theorem of Lie-Kolchin for Trees. Contributions to Algebra: A Collection of Papers Dedicated to Ellis Kolchin (1977), Academic Press: Academic Press New York · Zbl 0354.00011
[29] Wlodarczyk, K.; Klim, D.; Plebaniak, R., Existence and uniqueness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl., 328, 46-57 (2007) · Zbl 1110.54025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.