zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials. (English) Zbl 1245.65088
Summary: An efficient modification of the variational iteration method is presented using Chebyshev polynomials. Special attention is given to study the convergence of the proposed method. The new modification is tested for some examples to demonstrate reliability and efficiency of the proposed method. A comparison of our numerical results those of the conventional numerical method, the fourth-order Runge-Kutta method are given. The comparison shows that the solution using our modification is fast-convergent and is in excellent conformance with the exact solution. Finally, we conclude that the proposed method can be applied to a large class of linear and non-linear differential equations.
MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65L05Initial value problems for ODE (numerical methods)