zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel technique for nonlinear analysis of beams on two-parameter elastic foundations. (English) Zbl 1245.74036
Summary: Postbuckling, nonlinear bending, and nonlinear vibration analyses are presented for a simply supported Euler–Bernoulli beam resting on a two-parameter elastic foundation. The nonlinear model is introduced by using the exact expression of the curvature. Two kinds of end conditions, namely movable and immovable, are considered. The nonlinear equation of motion, including beam-foundation interaction, is derived separately for these two kinds of end conditions. The analysis uses a two-step perturbation technique to determine the postbuckling equilibrium paths of an axially loaded beam, the static large deflections of a bending beam subjected to a uniform transverse pressure, and the nonlinear frequencies of a beam with or without initial stresses. The numerical results confirm that the foundation stiffness has a significant effect on the nonlinear behavior of Euler-Bernoulli beams. The results also reveal that the end condition has a great effect on the nonlinear bending and nonlinear vibration behaviors of Euler-Bernoulli beams with or without elastic foundations.
MSC:
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
74H45Vibrations (dynamical problems in solid mechanics)
74G65Energy minimization (equilibrium problems in solid mechanics)