zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global convergence of a nonmonotone filter method for equality constrained optimization. (English) Zbl 1245.90092
Summary: We present a global convergence theory for a class of nonmonotone filter trust region methods. At each iteration, the trial step is decomposed into a quasi-normal step and a tangential step. Comparable to the traditional filter and monotone methods, the new approach is more flexible and less computational scale. Under some reasonable conditions, we show that there exists at least one accumulate point of the sequence of iterates that is a KKT point.
MSC:
90C26Nonconvex programming, global optimization
65K05Mathematical programming (numerical methods)
References:
[1]Byrd, R. H.; Schnabel, R. B.; Shulta, G. A.: A trust region algorithm for nonlinear constrained optimization, SIAM J. Nimer. anal. 24, 1152-1170 (1987) · Zbl 0631.65068 · doi:10.1137/0724076
[2]M.R. Celis, J.E. Dennis, R.A. Tapia, A trust region strategy for nonlinear equality constrained optimization, in: Numerical Optimization 1984, SIAM, Philadelphia, PA,1985. · Zbl 0566.65048
[3]Ei-Alem, M.: A golbal convergent thoery for dennis, EI-alem, and maciel’s class of trust region algorithms for constrained optimization without assuming regularing, SIAM J. Optim. 9, 965-990 (1999) · Zbl 0957.65059 · doi:10.1137/S1052623497331762
[4]Powell, M. J. D.; Yuan, Y.: A trust region algorithm algorithm for equality constrained optimization, Math. program. 49, 189-211 (1991) · Zbl 0816.90121 · doi:10.1007/BF01588787
[5]Vardi, A.: A trust region algorithm for equality constrained minimization: convergent properties and implementation, SIAM J. Numer. anal. 22, 575-591 (1985) · Zbl 0581.65045 · doi:10.1137/0722035
[6]Dennis, J. E.; Vicente, L. N.: On the convergence theory of trust region based algorithm, SIAM J. Optim. 7, 927-950 (1997) · Zbl 0891.65073 · doi:10.1137/S1052623494276026
[7]Fletcher, R.; Leyffer, S.: Nonlinear programming without a penalty function, Math. program. 91, No. 2, 239-269 (2002) · Zbl 1049.90088 · doi:10.1007/s101070100244
[8]R. Fletcher, S. Leyffer, P.L. Toint, On the global convergence of an SLP-filter algorithm, Tech.Report.NA/183, Department of Mathematics, University of Dundee, 1998.
[9]Fletcher, R.; Gould, N. I. M.; Leyffer, S.; Toint, P. L.; Wachter, A.: A global convergence of a trust region SQP-filter algorithm for general nonlinear programming, SIAM J. Optim. 13, 635-660 (2002) · Zbl 1038.90076 · doi:10.1137/S1052623499357258
[10]Fletcher, R.; Leyffer, S.; Toint, P. L.: On the global convergence of a filter-SQP algorithm, SIAM J. Optim. 13, 44-59 (2002) · Zbl 1029.65063 · doi:10.1137/S105262340038081X
[11]Su, K.; Che, J.: A modified SQP-filter method and its global convergence, Appl. math. Comput. 194, No. 1, 92-101 (2007) · Zbl 1193.90215 · doi:10.1016/j.amc.2007.04.014
[12]R. Fletcher, S. Leyffer, A bundle filter method for nonsmooth nonlinear optimization, Technical Report NA/195, Department of Mathematics, University of Dundee, Scotland, December, 1999.
[13]Wang, Z.; Zhu, D.: A reduced Hessian algorithm with line search filter method for nonlinear programming, Appl. math. Comput. 217, No. 19, 7679-7691 (2011) · Zbl 1226.65059 · doi:10.1016/j.amc.2011.02.071
[14]Karas, W.; Oening, P.; Ribeiro, A.: Global convergence of slanting filter methods for nonlinear programming, Appl. math. Comput. 200, No. 2, 486-500 (2008) · Zbl 1149.65042 · doi:10.1016/j.amc.2007.11.043
[15]Gu, C.: Nonmonotone filter DQMM method for the system of nonlinear equations, Appl. math. Comput. 217, No. 22, 9351-9357 (2011) · Zbl 1223.65036 · doi:10.1016/j.amc.2011.04.023
[16]Chen, Z. W.: A penalty-free-type nonmonotone trust region method for nonlinear constrained optimization, Appl. math. Comput. 173, 1014-1046 (2006) · Zbl 1093.65058 · doi:10.1016/j.amc.2005.04.031
[17]Deng, N. Y.; Xiao, Y.; Zhou, F. J.: A nonmonotone trust region algorithm for equality constrained optimization, J. optim. Theory appl. 76, 259-285 (1993) · Zbl 0797.90088 · doi:10.1007/BF00939608
[18]M. EI-Alem, A global convergence theory for a class of trust region algorithms for constrained optimization, Tech.Rep.TR 88-5,Department of computational and Applied Mathematics. Rice University, Houston, Texas, USA.
[19]Ei-Alem, M.: A global convergence theory for the dennis-celis-tapia trust region algorithm for constrained optimization, SIAM J. Numer. anal. 28, 266-290 (1991) · Zbl 0725.65061 · doi:10.1137/0728015
[20]Grippo, L.; Lamparidlo, F.; Ludidi, S.: A nonmonotone line search technique for Newton’s method, SIAM J. Numer. anal. 23, 707-716 (1986) · Zbl 0616.65067 · doi:10.1137/0723046
[21]Ke, X. W.; Han, J. Y.: A nonmonotone trust region algorithm for equality constrained optimization, Sci. China 38, 683-695 (1995) · Zbl 0835.90089
[22]Ulbrich, M.; Ulbrich, S.: Nonmonotone trust region methods for nonlinear equality constrained optimization without a penalty function, Math. program. Ser. B 95, 103-135 (2003) · Zbl 1030.90123 · doi:10.1007/s10107-002-0343-9
[23]Powell, M. J. D.: Convergence properties of a class of minimization algorithm, Nonlinear programming 2, 1-27 (1975) · Zbl 0321.90045
[24]R.H. Byrd, Robust trust region methods for constrained optimization, Third SIAM Conference on Optimization, Houston, Texas, May 1987.
[25]E.O. Omojokun, Trust region algorithms for optimization with nonlinear equality and inequality constraints, PhD thesis, University of Colorado, Boulder Colorado, USA,1989.
[26]Dennis, J. E.; Ei-Alem, M.; Maciel, M. C.: A global convergence theory for general trust region based algorithms for equality constrained optimization, SIAM J. Optim. 7, 177-207 (1997) · Zbl 0867.65031 · doi:10.1137/S1052623492238881
[27]Hock, W.; Schittkowski, K.: Test examples for nonlinear programming codes, lecture notes in economics and mathematics system, no.187, (1981) · Zbl 0452.90038
[28]Schittkowski, K.: More test examples for nonlinear mathematical programming codes, lecture notes in economics and mathematics system, no.282, (1987) · Zbl 0658.90060