zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On simultaneous optimization of truss geometry and topology. (English) Zbl 1245.90112
Summary: We address the classical problem of optimal truss design where cross-sectional areas and the positions of joints are simultaneously optimized. Several approaches are discussed from a general point of view. In particular, we focus on the difference between simultaneous and alternating optimization of geometry and topology. We recall a rigorously mathematical approach based on the implicit programming technique which considers the classical single load minimum compliance problem subject to a volume constraint. This approach is refined, leading to three new problem formulations which can be treated by methods of mathematical programming. In particular, these formulations cover the effect of melting end nodes, i.e., vanishing potential bars due to changes in the geometry. In one of these new problem formulations, the objective function is a polynomial of degree three and the constraints are bilinear or just sign constraints. Because heuristics is avoided, certain optimality properties can be proven for resulting structures. The paper closes with two numerical test examples.
MSC:
90C29Multi-objective programming; goal programming
74P05Compliance or weight optimization (solid mechanics)
90C90Applications of mathematical programming
65K05Mathematical programming (numerical methods)
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
Software:
SNOPT
References:
[1]Achtziger W (1997) Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects. In: Rozvany GIN (ed) Topology optimization in structural mechanics. Springer, Berlin Heidelberg New York, pp 57–100
[2]Achtziger W (1998) Multiple load truss topology and sizing optimization: Some properties of minimax compliance. J Optim Theory Appl 98:255–280 · Zbl 0915.73036 · doi:10.1023/A:1022637216104
[3]Achtziger W (2006) Simultaneous optimization of truss topology and geometry, revisited. In: Bendsøe M, Olhoff N, Sigmund O (eds) IUTAM Symposium on topological design optimization of structures, machines and materials: status and perspectives. Springer, Berlin Heidelberg New York, pp 413–423
[4]Achtziger W, Bendsøe MP, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput Sci Eng 4:315–345 · Zbl 0769.73054 · doi:10.1016/0899-8248(92)90005-S
[5]Barbieri E, Lombardi M (1998) Minimum weight shape and size optimization of truss structures made of uncertain materials. Struct Multidisc Optim 16:147–154
[6]Barta J (1957) On the minimum weight of certain redundant structures. Acta Tech Acad Sci Hung 18:67–76
[7]Ben-Tal A, Kočvara M, Zowe J (1993) Two nonsmooth approaches to simultaneous geometry and topology design of trusses. In: Bendsøe M, Soares CM (eds) Topology optimization of structures. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 31–42
[8]Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin Heidelberg New York
[9]Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Optim 7:141–159 · doi:10.1007/BF01742459
[10]Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York, USA
[11]Deb K, Gu S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37:447–465 · Zbl 1015.74040 · doi:10.1016/S0168-874X(00)00057-3
[12]Dobbs MW, Felton LP (1969) Optimization of truss geometry. ASCE J Struct Div 95:2105–2118
[13]Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J Méc 3:25–52
[14]Fleron P (1964) Minimum weight of trusses. Bygingsstatik Meddelelser 35:81–96
[15]Galante M (1996) Genetic algorithms as an approach to optimize real-world trusses. Int J Numer Methods Eng 39:361–382 · doi:10.1002/(SICI)1097-0207(19960215)39:3<361::AID-NME854>3.0.CO;2-1
[16]Gauvin J, Dubeau F (1982) Differential properties of the marginal function in mathematical programming. Math Program Stud 19:101–119 · Zbl 0502.90072 · doi:10.1007/BFb0120984
[17]Gill P, Murray W, Saunders M (1997) User’s guide for SNOPT 5.3: A Fortran package for large-scale nonlinear programming. Tech. Rep. NA 97-5, Department of Mathematics, University of California, USA (revised 1998)
[18]Hemp W (1973) Optimum structures. Clarendon Press, Oxford, UK
[19]Hörnlein H (1979) Ein Algorithmus zur Strukturoptimierung von Fachwerkkonstruktionen (in German). Diplomarbeit, Department of Mathematics, Ludwigs-Maximilian-Universität, Munich, Germany
[20]Imai K, Schmit L (1981) Configuration optimization of trusses. ASCE J Struct Div 107:745–756
[21]Kirsch U (1990) On the relationship between optimum structural topologies and geometries. Struct Optim 2:39–45 · doi:10.1007/BF01743519
[22]Kočvara M, Zowe J (1995) How to optimize mechanical structures simultaneously with respect to geometry and topology. In: Olhoff N, Rozvany G (eds) First world congress of structural and multidisciplinary optimization. Pergamon, Oxford, UK, pp 135–140
[23]Kočvara M, Zowe J (1996) How mathematics can help in design of mechanical structures. In: Griffiths D, Watson G (eds) Numerical analysis 1995. Longman Scientific and Technical, Harlow, UK, pp 76–93
[24]Lev O (1978) Optimum truss geometry for two loading conditions. ASCE J Struct Div 104:1203–1210
[25]Outrata J, Kocvara M, Zowe J (1998) Nonsmooth approach to optimization problems with equilibrium constraints: theory, applications and numerical results. Kluwer, Dordrecht, The Netherlands
[26]Pedersen P (1970) On the minimum mass layout of trusses. In: AGARD Conference Proceedings No. 36 (AGARD-CP-36-70), NATO Research and Technology Organisation, pp 11.1–11.17, URL http://www.rta.nato.int/Abstracts.asp , Symposium on Structural Optimization, Istanbul, Turkey, 1969
[27]Pedersen P (1972) On the optimal layout of multi-purpose trusses. Comput Struct 2:695–712 · doi:10.1016/0045-7949(72)90032-6
[28]Pedersen P (1973) Optimal joint positions for space trusses. ASCE J Struct Div 99:2459–2476
[29]Ringertz U (1985) On topology optimization for trusses. Eng Optim 9:21–36 · doi:10.1080/03052158508902499
[30]Rozvany G, Bendsøe M, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48:41–119 · doi:10.1115/1.3005097
[31]Svanberg K (1981) Optimization of geometry in truss design. Comput Methods Appl Mech Eng 28:63–80 · Zbl 0466.73121 · doi:10.1016/0045-7825(81)90027-X
[32]Sved G (1954) The minimum weight of certain redundant structures. Aust J Appl Sci 5:1–9
[33]Vanderplaats G, Moses F (1972) Automated design of trusses for optimum geometry. ASCE J Struct Div 98:671–690