zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic Lotka-Volterra models with multiple delays. (English) Zbl 1245.92063
The authors investigate a stochastic Lotka-Volterra model given as the solution of a multidimensional quadratic stochastic differential equation with multiple delays driven by a scalar Brownian motion. They provide sufficient criteria for non-explosion, p-th moment boundedness, and upper bounds for the almost sure asymptotic growth of the solutions.
MSC:
92D40Ecology
34K50Stochastic functional-differential equations
60H10Stochastic ordinary differential equations
60J70Applications of Brownian motions and diffusion theory
References:
[1]Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences, (1994)
[2]Bahar, A.; Mao, X.: Stochastic delay population dynamics, Int. J. Pure appl. Math. 11, 377-400 (2004) · Zbl 1043.92028
[3]Bahar, A.; Mao, X.: Stochastic delay Lotka-Volterra model, J. math. Anal. appl. 292, 364-380 (2004) · Zbl 1043.92034 · doi:10.1016/j.jmaa.2003.12.004
[4]Pao, C. V.: Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays, Nonlinear anal. Real world appl. 5, 91-104 (2004) · Zbl 1066.92054 · doi:10.1016/S1468-1218(03)00018-X
[5]Tornatore, E.; Manca, L.; Yashima, H. Fujita: Comportamento asintotico Della soluzione del sistema di equazioni stocastiche per due specie in competizione, Istit. lombardo accad. Sci. lett. Rend. A 136-137, 151-183 (2004)
[6]Chen, F.: Global asymptotic stability in n-species non-autonomous Lotka-Volterra competitive systems with infinite delays and feedback control, Appl. math. Comput. 170, 1452-1468 (2005) · Zbl 1081.92038 · doi:10.1016/j.amc.2005.01.028
[7]Fayolle, G.; Furtlehner, C.: Stochastic dynamics of discrete curves and multi-type exclusion processes, J. stat. Phys. 127, 1049-1094 (2007) · Zbl 1126.82022 · doi:10.1007/s10955-007-9286-0
[8]Wang, J.; Zhou, L.; Tang, Y.: Asymptotic periodicity of the Volterra equation with infinite delay, Nonlinear anal. 68, 315-328 (2008) · Zbl 1133.35004 · doi:10.1016/j.na.2006.10.050
[9]Qiu, J.; Cao, J.: Exponential stability of a competitive Lotka-Volterra system with delays, Appl. math. Comput. 201, 819-829 (2008) · Zbl 1143.92040 · doi:10.1016/j.amc.2007.11.046
[10]Wan, L.; Zhou, Q.: Stochastic Lotka-Volterra system with infinite delay, Statist. probab. Lett. 79, 698-706 (2009) · Zbl 1159.92321 · doi:10.1016/j.spl.2008.10.016
[11]Du, N. H.; Sam, V. H.: Dynamic of a stochastic Lotka-Volterra model perturbed by white noise, J. math. Anal. appl. 324, 82-97 (2006) · Zbl 1107.92038 · doi:10.1016/j.jmaa.2005.11.064
[12]Rudnicki, R.: Long-time behaviour of a stochastic prey-predator model, Stochastic process. Appl. 108, 93-107 (2003) · Zbl 1075.60539 · doi:10.1016/S0304-4149(03)00090-5
[13]Rudnicki, R.; Pichor, K.: Influence of stochastic perturbation on prey-predator systems, Math. biosci. 206, 108-119 (2007) · Zbl 1124.92055 · doi:10.1016/j.mbs.2006.03.006
[14]Gard, T. C.: Persistence in stochastic food web models, Bull. math. Biol. 46, 357-370 (1984) · Zbl 0533.92028
[15]Gard, T. C.: Stability for multispecies population models in random environments, Nonlinear anal. 10, 1411-1419 (1986) · Zbl 0598.92017 · doi:10.1016/0362-546X(86)90111-2
[16]Gard, T. C.: Introduction to stochastic differential equations, (1988)
[17]Fariaa, T.; Oliveirab, J. J.: Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks, J. differential equations 244, 1049-1079 (2008) · Zbl 1146.34053 · doi:10.1016/j.jde.2007.12.005
[18]Skwara, U.: A stochastic model of symbiosis with degenerate diffusion process, Ann. polon. Math. 98, 111-127 (2010) · Zbl 1223.47043 · doi:10.4064/ap98-2-2
[19]Mao, X.; Marion, G.; Renshaw, E.: Environmental noise suppresses explosion in population dynamics, Stochastic process. Appl. 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[20]Mao, X.; Sabanis, Sotirios; Renshaw, Eric: Asymptotic behavior of the stochastic Lotka-Volterra model, J. math. Anal. appl. 287, 141-156 (2003) · Zbl 1048.92027 · doi:10.1016/S0022-247X(03)00539-0
[21]Mao, X.; Yuan, C.; Zou, J.: Stochastic differential delay equations of population dynamics, J. math. Anal. appl. 304, 296-320 (2005) · Zbl 1062.92055 · doi:10.1016/j.jmaa.2004.09.027
[22]Muroya, Y.: Persistence and global stability in discrete models of Lotka-Volterra type, J. math. Anal. appl. 330, 24-33 (2007) · Zbl 1124.39011 · doi:10.1016/j.jmaa.2006.07.070
[23]Xu, Y.; Wu, F.; Tan, Y.: Stochastic Lotka-Volterra system with infinite delay, J. comput. Appl. math. 232, 472-480 (2009) · Zbl 1205.34103 · doi:10.1016/j.cam.2009.06.023