zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameter identification and synchronization of fractional-order chaotic systems. (English) Zbl 1245.93039
Summary: The knowledge about parameters and order is very important for synchronization of fractional-order chaotic systems. In this article, identification of parameters and order of fractional-order chaotic systems is converted to an optimization problem. Particle swarm optimization algorithm is used to solve this optimization problem. Based on the above parameter identification, synchronization of the fractional-order Lorenz, Chen and a novel system (commensurate or incommensurate order) is derived using active control method. The new fractional-order chaotic system has four-scroll chaotic attractors. The existence and uniqueness of solutions for the new fractional-order system are also investigated theoretically. Simulation results signify the performance of the work.

MSC:
93B30System identification
93C15Control systems governed by ODE
34A08Fractional differential equations
References:
[1]Li, L.; Wang, L.; Liu, L.: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation, Appl math comput 179, 135-146 (2006) · Zbl 1100.65052 · doi:10.1016/j.amc.2005.11.086
[2]Tang, Y.; Guan, X.: Parameter estimation for time-delay chaotic system by particle swarm optimization, Chaos solitons fract 40, 1391-1398 (2009) · Zbl 1197.93155 · doi:10.1016/j.chaos.2007.09.055
[3]Modares, H.; Alfi, A.; Fateh, M.: Parameter identification of chaotic dynamics systems through an improved particle swarm optimization, Expert syst appl 37, 3714-3720 (2010)
[4]He, Q.; Wang, L.; Liu, B.: Parameter estimation for chaotic systems by particle swarm optimization, Chaos solitons fract 34, 654-661 (2007) · Zbl 1152.93504 · doi:10.1016/j.chaos.2006.03.079
[5]Tang, Y.; Guan, X.: Parameter estimation of chaotic system with time-delay: A differential evolution approach, Chaos solitons fract 42, 3132-3139 (2009) · Zbl 1198.93222 · doi:10.1016/j.chaos.2009.04.045
[6]Chang, W.: Parameter identification of Chen and Lü systems: A differential evolution approach, Chaos solitons fract 32, 1469-1476 (2007) · Zbl 1129.93022 · doi:10.1016/j.chaos.2005.11.067
[7]Chang, W.: Parameter identification of Rössler’s chaotic system by an evolutionary algorithm, Chaos solitons fract 29, 1047-1053 (2006)
[8]Hu, M.; Xu, Z.; Zhang, R.; Hu, A.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems, Phys lett A 361, 231-237 (2007) · Zbl 1170.93365 · doi:10.1016/j.physleta.2006.08.092
[9]Huang, L.; Wang, M.; Feng, R.: Parameters identification and adaptive synchronization of chaotic systems with unknown parameters, Phys lett A 342, 299-304 (2005) · Zbl 1222.93203 · doi:10.1016/j.physleta.2004.11.065
[10]Zhang, R.; Tian, G.; Li, P.; Yang, S.: Adaptive synchronization of a class of chaotic systems with uncertain parameters, Acta phys sin 57, 2073-2080 (2008) · Zbl 1174.93585
[11]Zhang, R.; Yang, S.: Adaptive generalized projective synchronization of two different chaotic systems with unknown parameters, Chin phys B 17, 4073-4079 (2008)
[12]Ma, J.; Zhang, A.; Xia, Y.; Zhang, L.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems, Appl math comput 215, 3318-3326 (2010) · Zbl 1181.93032 · doi:10.1016/j.amc.2009.10.020
[13]Ma, J.; Su, W.; Gao, J.: Optimization of self-adaptive synchronization and parameters estimation in chaotic hindmarsh – rose neuron model, Acta phys sin 59, 1554-1561 (2010) · Zbl 1224.93031
[14]Pourmahmood, M.; Khanmohammadi, S.; Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun nonlinear sci numer simul 16, 2869-2879 (2011) · Zbl 1221.93131 · doi:10.1016/j.cnsns.2010.09.038
[15]Sun, K.; Sprott, J.: Bifurcations of fractional-order diffusionless Lorenz system, Electronic J theor phys 22, 123-134 (2009)
[16]Li, C.; Cheng, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Physica A 341, 55-61 (2004)
[17]Li, C.; Peng, G.: Chaos in Chen’s system with a fractional order, Chaos solitons fract 22, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[18]Lu, J.; Chen, G.: A note on the fractional-order Chen system, Chaos solitons fract 27, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[19]Grigorenko, I.; Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys rev lett 91, 034101 (2003)
[20]Yu, Y.; Li, H.; Wang, S.; Yu, J.: Dynamic analysis of a fractional-Lorenz chaotic system, Chaos solitons fract 42, 1181-1189 (2009) · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016
[21]Wu, X.; Shen, S.: Chaos in the fractional-order Lorenz system, Int J comput math 86, 1274-1282 (2009) · Zbl 1169.65115 · doi:10.1080/00207160701864426
[22]Yang, Q.; Zeng, C.: Chaos in fractional conjugate Lorenz system and its scaling attractors, Commun nonlinear sci numer simul 15, 4041-4051 (2010) · Zbl 1222.37037 · doi:10.1016/j.cnsns.2010.02.005
[23]Bhalekar, S.; Daftardar-Gejji, V.: Fractional ordered Liu system with time-delay, Commun nonlinear sci numer simul 15, 2178-2191 (2009) · Zbl 1222.34005 · doi:10.1016/j.cnsns.2009.08.015
[24]Varsha, D.; Sachin, B.: Chaos in fractional ordered Liu system, Comput math appl 59, 1117-1127 (2010)
[25]Diethelm, K.; Ford, N.; Freed, A.: A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[26]Matignon D. Stability results for fractional differential equations with applications to control processing. In: IEEE-SMC Proceedings on Computational Engineering in Systems and Application Multi-Conference, vol. 2, IMACS, Lille, France, 1996, p. 963 – 8.
[27]Tavazoei, M.; Haeri, M.: Chaotic attractors in incommensurate fractional order systems, Physcia D 237, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[28]Tavazoei, M.; Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems, Phys lett A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[29]Deng, W.; Lü, J.: Design of multidirectional multi-scroll chaotic attractors based on fractional differential systems via switching control, Chaos 16, 043120 (2006) · Zbl 1146.37316 · doi:10.1063/1.2401061
[30]Deng, W.; Lü, J.: Generating multidirectional multi-scroll chaotic attractors via a fractional differential hysteresis system, Phys lett A 369, 438-443 (2007) · Zbl 1209.37032 · doi:10.1016/j.physleta.2007.04.112
[31]Diethelm, K.; Ford, J.: Analysis of fractional differential equations, J math anal appl 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[32]Deng, W.; Li, C.; Lü, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dyn 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[33]Odibat, Z.; Corson, N.; Aziz-Alaoui, M.; Bertelle, C.: Synchronization of chaotic fractional-order systems via linear control, Int J bifurcat chaos 20, 81-97 (2010) · Zbl 1183.34095 · doi:10.1142/S0218127410025429
[34]Song, L.; Yang, J.; Xu, S.: Chaos synchronization for a class of nonlinear oscillators with fractional order, Nonlinear anal-theor 72, 2326-2336 (2010) · Zbl 1187.34066 · doi:10.1016/j.na.2009.10.033
[35]Bhalekar, S.; Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control, Commun nonlinear sci numer simul 15, 3536-3546 (2010) · Zbl 1222.94031 · doi:10.1016/j.cnsns.2009.12.016
[36]Zhang, R.; Yang, S.: Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation, Chin phys B 18, 3295-3303 (2009)
[37]Zhang, R.; Yang, S.: Adaptive synchronisation of fractional-order chaotic systems, Chin phys B 19, 020510 (2010)
[38]Wu, X.; Li, J.; Chen, G.: Chaos in the fractional order unified system and its synchronization, J Frank instit 345, 392-401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[39]Zhang, R.; Yang, Y.; Yang, S.: Adaptive synchronization of the fractional-order unified chaotic system, Acta phys sin 58, 6039-6044 (2009) · Zbl 1212.37058
[40]Deng, W.; Li, C.: Chaos synchronization of the fractional Lü system, Physica A 353, 61-72 (2005)
[41]Deng, H.; Li, T.; Wang, Q.; Li, H.: A fractional-order hyperchaotic system and its synchronization, Chaos solitons fract 41, 962-969 (2009) · Zbl 1198.34115 · doi:10.1016/j.chaos.2008.04.034
[42]Li, C.; Deng, W.; Xu, D.: Chaos synchronization of the Chua system with a fractional order, Physica A 360, 171-185 (2006)
[43]Sparrow, C.: The Lorenz equations: bifurcations, chaos and strange attractors, (1982)
[44]Kennedy J, Eberhart R. Particle swarm optimization. In: Proc IEEE Int Conf Neural Networks, vol. 4, 1995, p. 1942 – 8.
[45]Kennedy, J.; Eberhart, R.; Shi, Y.: Swarm intelligence, (2001)
[46]Jiang, Y.; Hu, T.; Huang, C.; Wu, X.: An improved particle swarm optimization algorithm, Appl math comput 193, 231-239 (2007) · Zbl 1193.90220 · doi:10.1016/j.amc.2007.03.047
[47]Chang, W.; Shih, S.: PID controller design of nonlinear systems using an improved particle swarm optimization approach, Commun nonlinear sci numer simul 15, 3632-3639 (2010) · Zbl 1222.90083 · doi:10.1016/j.cnsns.2010.01.005
[48]Daras, S.; Momeni, H.: A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors, Phys lett A 373, 3637-3642 (2009) · Zbl 1233.37022 · doi:10.1016/j.physleta.2009.07.088