zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-fragile PD state H control for a class of uncertain descriptor systems. (English) Zbl 1245.93045
Summary: This paper is concerned with the problem of non-fragile proportional-plus-derivative (PD) state H control for a class of uncertain descriptor systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing not only in the state matrix but also in the derivative matrix. A new version of bounded real lemma for descriptor systems is proposed, which guarantees a descriptor system to be normal and stable (NS) with γ-disturbance rejection. Based on this, we address the problem of designing non-fragile PD state H controllers with additive and multiplicative controller uncertainties, respectively. Sufficient conditions are presented to synthesize two classes of such non-fragile controllers in terms of LMIs. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design method.
93B36H -control
93B52Feedback control
[1]Dai, L. Y.: Singular control systems, (1989)
[2]Duan, G. R.: Analysis and design of descriptor linear systems, (2010)
[3]Doyle, J. C.; Glover, K.; Khargonekar, P. P.; Francis, B. A.: State space solutions to standard H2 and H control problems, IEEE trans. Autom. control 34, No. 8, 831-847 (1989) · Zbl 0698.93031 · doi:10.1109/9.29425
[4]Duan, G. R.; Patton, R. J.: Eigenstructure assignment in descriptor systems via proportional plus derivative state feedback, Int. J. Control 68, No. 5, 1147-1162 (1997) · Zbl 0891.93039 · doi:10.1080/002071797223253
[5]Feng, Z.; Lam, J.; Gao, H.: Delay-dependent robust H controller synthesis for discrete singular delay systems, J. robust nonlinear control 21, No. 16, 1880-1902 (2011)
[6]Haraldsdottir, A.; Kabamba, P. T.; Ulsoy, A. G.: Sensitivity reduction by state derivative feedback, J. dyn. Syst. meas. Control 110, No. 1, 84-93 (1988) · Zbl 0648.93011 · doi:10.1115/1.3152655
[7]Haraldsdottir, A.; Kabamba, P. T.; Ulsoy, A. G.: Control of linear systems by output proportional plus derivative feedback, J. dyn. Syst. meas. Control 112, No. 1, 27-34 (1990) · Zbl 0708.93022 · doi:10.1115/1.2894135
[8]Kuo, B. C.: Digital control systems, (1980)
[9]Le, V. X.: Synthesis of proportional-plus-derivative feedback for descriptor systems, IEEE trans. Autom. control 37, No. 5, 672-675 (1992) · Zbl 0756.93025 · doi:10.1109/9.135514
[10]Lewis, F. L.: A survey of linear singular systems, Circuits syst. Sign. process. 5, No. 1, 3-36 (1986) · Zbl 0613.93029 · doi:10.1007/BF01600184
[11]Lin, C.; Wang, Q. G.; Lee, T. H.: Robust normalization and stabilization of uncertain descriptor systems with norm-bounded perturbations, IEEE trans. Autom. control 50, No. 4, 515-520 (2005)
[12]Mao, W. J.: An LMI approach to D-stability and D-stabilization of linear discrete singular systems with state delay, Appl. math. Comput. 218, No. 5, 1694-1704 (2011)
[13]Masubuchi, I.; Kamitane, Y.; Ohara, A.; Suda, N.: H control for descriptor systems: a matrix inequalities approach, Automatica 33, No. 4, 669-673 (1997) · Zbl 0881.93024 · doi:10.1016/S0005-1098(96)00193-8
[14]Mukundan, R.; Dayawansa, W.: Feedback control of singular systems-proportional and derivative feedback of the state, Int. J. Syst. sci. 14, No. 6, 615-632 (1983) · Zbl 0509.34004 · doi:10.1080/00207728308926483
[15]Park, J. H.: Robust non-fragile decentralized controller design for uncertain large-scale interconnected systems with time-delays, ASME J. Dyn. syst. Meas. control 124, No. 2, 332-336 (2002)
[16]Park, J. H.; Jung, H. Y.: On the design of nonfragile guaranteed cost controller for a class of uncertain dynamic systems with state delays, Appl. math. Comput. 150, No. 1, 245-257 (2004) · Zbl 1036.93054 · doi:10.1016/S0096-3003(03)00224-8
[17]Park, J. H.: Robust non-fragile guaranteed cost control of uncertain large-scale systems with time-delays in subsystem interconnections, Int. J. Syst. sci. 35, No. 4, 233-241 (2004) · Zbl 1067.93054 · doi:10.1080/00207720410001714121
[18]Park, J. H.: Robust non-fragile control for uncertain discrete-delay large-scale systems with a class of controller gain variations, Appl. math. Comput. 149, 147-164 (2004) · Zbl 1035.93021 · doi:10.1016/S0096-3003(02)00962-1
[19]Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems, Syst. control lett. 8, No. 4, 351-357 (1987) · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[20]Shayman, M. A.; Zhou, Z.: Feedback control and classification of generalized singular systems, IEEE trans. Autom. control 32, No. 6, 483-494 (1987) · Zbl 0624.93028 · doi:10.1109/TAC.1987.1104642
[21]Syrmos, V. L.; Lewis, F. L.: A geometric approach to proportional plus derivative feedback using quotient and partitioned, Automatica 27, No. 2, 349-369 (1991) · Zbl 0736.93014 · doi:10.1016/0005-1098(91)90083-E
[22]Wang, H. S.; Yung, C. F.; Chang, F. R.: Bounded real lemma and H for descriptor systems, IEE pro. Control theory appl. 145, No. 3, 316-322 (1989)
[23]Wo, S. L.; Zou, Y.; Chen, Q. W.; Xu, S.: Non-fragile controller design for discrete descriptor systems, J. franklin inst. 346, 914-922 (2009)
[24]Wu, A. G.; Duan, G. R.; Zhao, S. M.: Impulsive-mode controllablisability in descriptor linear systems, IET control theory appl. 1, No. 3, 558-563 (2007)
[25]Wu, Z.; Park, J. H.; Su, H.; Chu, J.: Dissipativity analysis for singular systems with time-varying delays, Appl. math. Comput. 218, No. 8, 4605-4613 (2011)
[26]Xu, H.; Zou, Y.: H control for 2-D singular delayed systems, Int. J. Syst. sci. 42, No. 4, 609-619 (2011) · Zbl 1233.93036 · doi:10.1080/00207720902974728
[27]Xu, S.; Yang, C. W.: H state feedback control for discrete singular systems, IEEE trans. Autom. control 45, No. 7, 1405-1409 (2000) · Zbl 0988.93026 · doi:10.1109/9.867074
[28]Xu, S.; Lam, J.; Wang, J. L.; Yang, G. H.: Non-fragile positive real control for uncertain linear neutral delay systems, Syst. control lett. 52, No. 1, 59-74 (2004) · Zbl 1157.93418 · doi:10.1016/j.sysconle.2003.11.001
[29]Xu, S.; Lam, J.: Robust control and filtering of singular systems, (2006)
[30]Yang, G. H.; Wang, J. L.: Non-fragile H control for linear systems with multiplicative controller gain variations, Automatica 37, No. 5, 727-737 (2001) · Zbl 0990.93031
[31]Yee, J. S.; Yang, G. H.; Wang, J. L.: Non-fragile guaranteed cost control for discrete-time uncertain linear systems, Int. J. Syst. sci. 32, No. 7, 845-853 (2001) · Zbl 1003.49024 · doi:10.1080/002077201300306180
[32]Zhang, G.; Liu, W.: Impulsive mode elimination for descriptor systems by a structured P-D feedback, IEEE trans. Autom. control 56, No. 12, 2968-2973 (2011)
[33]Zhou, K.; Khargonekar, P. P.: An algebraic Riccati equation approach to H optimization, Syst. control lett. 11, No. 2, 85-91 (1988) · Zbl 0666.93025 · doi:10.1016/0167-6911(88)90080-1