zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability of a class of networked control systems with time delays and packet dropouts. (English) Zbl 1245.93110
Summary: We study the exponential stability problem for a class of networked control systems (NCSs) with time delays and packet dropouts. The state-feedback closed-loop NCS is modeled as a new discrete-time switched system. Through using the parameter-dependent Lyapunov function, a sufficient condition is obtained for the exponential stability of the NCS under a packet-dropout rate. A linear matrix inequality approach is employed to design the state-feedback controller. An illustrative example is presented to demonstrate the effectiveness of the proposed method.
93D05Lyapunov and other classical stabilities of control systems
93B52Feedback control
[1]Park, J. H.; Park, C.; Kwon, O.; Lee, S.: A new stability criterion for bidirectional associative memory neural networks of neutral-type, Appl. math. Comput. 199, No. 2, 716-722 (2008) · Zbl 1149.34345 · doi:10.1016/j.amc.2007.10.032
[2]Kwon, O.; Park, J. H.; Lee, S. M.; Cha, E.: A new augmented Lyapunov – Krasovskiĭ functional approach for stability of linear systems with time-varying delays, Appl. math. Comput. 217, No. 17, 7197-7209 (2011) · Zbl 1219.93106 · doi:10.1016/j.amc.2011.02.006
[3]Kwona, O.; Park, J. H.: Exponential stability analysis for uncertain neural networks with interval time-varying delays, Appl. math. Comput. 212, No. 2, 530-541 (2009) · Zbl 1179.34080 · doi:10.1016/j.amc.2009.02.043
[4]Wua, Z. -G.; Park, J. H.; Su, H.; Chu, J.: Dissipativity analysis for singular systems with time-varying delays, Appl. math. Comput. 218, No. 8, 4605-4613 (2011)
[5]Park, J. H.; Kwon, O.; Lee, S.: State estimation for neural networks of neutral-type with interval time-varying delays, Appl. math. Comput. 203, No. 1, 217-223 (2008) · Zbl 1166.34331 · doi:10.1016/j.amc.2008.04.025
[6]Wang, J. F.; Liu, C. F.; Yang, H. Z.: Stability of a class of networked control systems with Markovian characterization, Appl. math. Model. 36, No. 10 (2012)
[7]Wang, J. F.; Yang, H. Z.: Output-feedback stabilization of Markovian jump linear systems over networks with time delays, J. inform. Comput. sci. 8, No. 13, 2545-2552 (2011)
[8]Xiong, J.; Lam, J.: Stabilization of linear systems over networks with bounded packet loss, Automatica 43, No. 1, 80-87 (2007) · Zbl 1140.93383 · doi:10.1016/j.automatica.2006.07.017
[9]Ishido, D. E. Yumiko; Takaba, Kiyotsugu: Quevedo stability analysis of networked control systems subject to packet-dropouts and finite-level quantization, Syst. control lett. 60, No. 5, 325-332 (2011) · Zbl 1214.93010 · doi:10.1016/j.sysconle.2011.02.008
[10]Hu, L. S.; Bai, T.; Shi, P.; Wu, Z. M.: Sampled-data control of networked linear control systems, Automatica 43, No. 5, 903-911 (2007) · Zbl 1117.93044 · doi:10.1016/j.automatica.2006.11.015
[11]Cloosterman, M. B. G.; Hetel, L.; Van De Wouwa, N.; Heemelsa, W. P. M.H.; Daafouz, J.; Nijmeijer, H.: Controller synthesis for networked control systems, Automatica 46, No. 10, 1584-1598 (2010) · Zbl 1204.93044 · doi:10.1016/j.automatica.2010.06.017
[12]Zhang, Y.; Fang, H.: Stabilization of nonlinear networked systems with sensor random packet dropout and time-varying delay, Appl. math. Model. 35, No. 5, 2253-2264 (2011) · Zbl 1217.93178 · doi:10.1016/j.apm.2010.11.038
[13]Zhang, W. A.; Yu, L.: Modelling and control of networked control systems with both network-induced delay and packet-dropout, Automatica 44, No. 12, 3206-3210 (2008) · Zbl 1153.93321 · doi:10.1016/j.automatica.2008.09.001
[14]Wang, J. F.; Yang, H. Z.: H control of a class of networked control systems with time delay and packet dropout, Appl. math. Comput. 35, No. 5, 7469-7477 (2011) · Zbl 1216.93042 · doi:10.1016/j.amc.2011.02.047
[15]Ding, F.; Liu, P. X.; Shi, Y.: Convergence analysis of estimation algorithms for dual-rate stochastic systems, Appl. math. Comput. 176, No. 1, 245-261 (2006) · Zbl 1095.65056 · doi:10.1016/j.amc.2005.09.048
[16]Ding, F.; Xiao, Y. S.: A finite-data-window least squares algorithm with a forgetting factor for dynamical modeling, Appl. math. Comput. 186, No. 1, 184-192 (2007) · Zbl 1113.93108 · doi:10.1016/j.amc.2006.06.133
[17]Ding, F.; Chen, H. B.; Li, M.: Multi-innovation least squares identification methods based on the auxiliary model for MISO systems, Appl. math. Comput. 187, No. 2, 658-668 (2007) · Zbl 1114.93101 · doi:10.1016/j.amc.2006.08.090
[18]Ding, F.: Several multi-innovation identification methods, Digit. signal process. 20, No. 4, 1027-1039 (2010)
[19]Ding, F.; Liu, P. X.; Liu, G.: Identification methods for Hammerstein nonlinear systems, Digit. signal process. 21, No. 2, 215-238 (2011)
[20]Ding, F.; Liu, G.; Liu, X. P.: Parameter estimation with scarce measurements, Automatica 47, No. 8, 1646-1655 (2011) · Zbl 1232.62043 · doi:10.1016/j.automatica.2011.05.007
[21]M.B.G. Cloosterman, Control Over Communication Networks: Modeling, Analysis, and Synthesis, Ph.D. Thesis, Technische Universiteit Eindhoven, The Netherlands, 2008.
[22]G. Zhai, B. Hu, K. Yasuda, A.N. Michel, Qualitative analysis of discrete-time switched systems, in: Proceedings of 2002 American Control Conference, USA, 2002, pp. 1880 – 1885.
[23]Zhang, W.; Branicky, M.; Phillips, S.: Stability of networked control systems, IEEE control syst. Mag. 21, No. 1, 84-99 (2001)