zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Markov chain approach to identifying Wiener systems. (English) Zbl 1245.93134
Summary: Identification of the Wiener system composed of an infinite impulse response (IIR) linear subsystem followed by a static nonlinearity is considered. The recursive estimates for unknown coefficients of the linear subsystem and for the values of the nonlinear function at any fixed points are given by the stochastic approximation algorithms with expanding truncations (SAAWET). With the help of properties of the Markov chain connected with the linear subsystem, all estimates derived in the paper are proved to be strongly consistent. In comparison with the existing results on the topic, the method presented in the paper simplifies the convergence analysis and requires weaker conditions. A numerical example is given, and the simulation results are consistent with the theoretical analysis.
93E12System identification (stochastic systems)
60J10Markov chains (discrete-time Markov processes on discrete state spaces)
[1]Zhu Y. Distillation column identification for control using Wiener model. In: Proceedings of American Control Conference, San Diego, 1999. 55: 3462–3466
[2]Kalafatis A, Arifin N, Wang L, et al. A new approach to the identification of pH processes based on the Wiener model. Chem Eng Sci, 1995, 50: 3693–3701 · doi:10.1016/0009-2509(95)00214-P
[3]Hunter I W, Korenberg M J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Bio Cybern, 1986, 55: 136–144
[4]Bai E W. Frequency domain identification of Wiener models. Automatica, 2003, 39: 1521–1530 · Zbl 1032.93010 · doi:10.1016/S0005-1098(03)00149-3
[5]Boyd S, Chua L O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circ Syst, 1985, 32: 1150–1161 · Zbl 0587.93028 · doi:10.1109/TCS.1985.1085649
[6]Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans Autom Control, 2006, 51: 390–400 · doi:10.1109/TAC.2005.864183
[7]Greblicki W. Nonparametric approach to Wiener system identification. IEEE Trans Circuits Syst-I: Fundam Theory Appl, 1997, 44: 538–545 · doi:10.1109/81.586027
[8]Hagenblad A, Ljung L, Wills A. Maximum likelihood identification of Wiener models. Automatica, 2008, 44: 2697–2705 · Zbl 1152.93508 · doi:10.1016/j.automatica.2008.02.016
[9]Hu X L, Chen H F. Strong consistence of recursive identification forWiener systems. Automatica, 2005, 41: 1905–1916 · Zbl 1087.93057 · doi:10.1016/j.automatica.2005.06.006
[10]Hu X L, Chen H F. Identification for Wiener systems with RTF subsystems. European J Control, 2006, 6: 581–594 · doi:10.3166/ejc.12.581-594
[11]Nordsjö A E, Zetterberg L H. Identification of certain time-varying nonlinear Wiener and Hammerstein systems. IEEE Trans Signal Process, 2001, 49: 577–592 · doi:10.1109/78.905884
[12]Verhaegen M, Westwick D. Identifying MIMO Wiener systems in the context of subspace model identificatin methods. Int J Control, 1996, 63: 331–349 · Zbl 0848.93014 · doi:10.1080/00207179608921846
[13]Vörös J. Parameter identification of Wiener systems with discontinuous nonlinearities. Syst Control Lett, 2001, 44: 363–372 · Zbl 0986.93020 · doi:10.1016/S0167-6911(01)00155-4
[14]Wigren T. Convergence analysis of recursive algorithms based on the nonlinear Wiener model. IEEE Trans Autom Control, 1994, 39: 2191–2206 · Zbl 0814.93074 · doi:10.1109/9.333765
[15]Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston: Birkhäuser, 1991
[16]Fan J Q, Yao Q. Nonlinear Time Series: Nonparametric and Parametric Approach. New York: Springer-Verlag, 2003
[17]Ljung L. System Identification: Theory for Users. Upper Saddle River: Prentice Hall, 1987
[18]Zhao W X, Chen H F, Zheng W X. Recursive identification for nonlinear ARX systems based on stochastic approximation algorithm. IEEE Trans Autom Control, 2010, 55: 1287–1299 · doi:10.1109/TAC.2010.2042236
[19]Bussgang J J. Crosscorrelation functions of amplitude-distorted Gaussian signals. Technical Report 216. MIT Research Laboratory of Electronics, 1952
[20]Song Q J, Chen H F. Identification of errors-in-variables systems with ARMA observation noise. Syst Control Lett, 2008, 57: 420–424 · Zbl 1139.93034 · doi:10.1016/j.sysconle.2007.10.010
[21]Ciarlet P G. Introduction to Numerical Linear Algebra and Optimisation. Cambridge: Cambridge University Press, 1989
[22]Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993
[23]Davydov Yu A. Mixing conditions for Markov chains. SIAM Probability Appl, 1973, 18: 312–328
[24]Nummelin E. General Irreducible Markov Chains and Non-negative Operators. Cambridge: Cambridge University Press, 1984
[25]Tong H. Nonlinear Time Series. Oxford: Oxford University Press, 1990
[26]Masry E, Györfi L. Strong consistency and rates for recursive probability density estimators of stationary processes. J Multivariate Analysis, 1987, 22: 79–93 · Zbl 0619.62079 · doi:10.1016/0047-259X(87)90077-7
[27]Chen H F. Stochastic Approximation and Its Applications. Dordrecht: Kluwer, 2002
[28]Song Q J, Chen H F. Identification of Wiener systems with internal noise. J Syst Sci Complex, 2008, 21: 378–393 · Zbl 1173.93034 · doi:10.1007/s11424-008-9120-z
[29]Hirschman I I, Widder D V. The Convolution Transform. Princeton, NJ: Princeton University Press, 1955