zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization control for the competitive complex networks with time delay and stochastic effects. (English) Zbl 1245.93141
Summary: The synchronization control problem for the competitive complex network with time delay and stochastic effects is investigated by using the stochastic technique and Lyapunov stability theory. The competitive complex network means that the dynamical varying rate of a part of nodes is faster than other nodes. Some synchronization criteria are derived by the full controller and pinning controller, respectively, and these criteria are convenient to be used for concision. A numerical example is provided to illustrate the effectiveness of the method proposed in this paper.
93E15Stochastic stability
93E03General theory of stochastic systems
[1]Wang, Y.; Wang, Z. D.; Liang, J. L.: A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances, Phys lett A 372, 6066-6073 (2008) · Zbl 1223.90013 · doi:10.1016/j.physleta.2008.08.008
[2]Yang, J. M.; Lu, L. P.; Xie, W. D.: On competitive relationship networks: a new method for industrial competition analysis, Physica A 382, 704-714 (2007)
[3]Lu, X. B.; Qin, B. Z.: Adaptive cluster synchronization in complex dynamical networks, Phys lett A 373, 3650-3658 (2009) · Zbl 1232.05219 · doi:10.1016/j.physleta.2009.08.013
[4]Hu, A. H.; Xu, Z. Y.: Pinning a complex dynamical network via impulsive control, Phys lett A 374, 186-190 (2009)
[5]Yang, J. M.; Yao, C. Z.; Ma, W. C.; Chen, G. R.: A study of the spreading scheme for viral marketing based on a complex network model, Physica A 389, 859-870 (2010)
[6]Watts, D.; Strogatz, S.: Collective dynamic of small world network, Nature 393, 440-442 (1998)
[7]Barabási, A. L.; Albert, R.: Emergence of scaling in random networks, Science 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[8]Newman, M. E. J.: The structure and function of complex networks, SIAM rev 45, 167-256 (2003) · Zbl 1029.68010 · doi:10.1137/S003614450342480
[9]Wang, X. F.; Chen, G.: Complex networks: small-world, scale-free and beyond, IEEE circ syst mag 3, 6-20 (2003)
[10]Wang, X.; Li, X.; Chen, G.: Theory and application of complex networks, (2006)
[11]Zhu, H. L.; Luo, H.; Peng, H. P.; Li, L. X.; Luo, Q.: Complex networks-based energy-efficient evolution model for wireless sensor networks, Chaos solitons fract 41, 1828-1835 (2009)
[12]Gao, H. J.; Lam, J.; Chen, G. R.: New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys lett A 360, 263-273 (2006)
[13]Chen, T. P.; Liu, X. W.; Lu, W. L.: Pinning complex networks by a single controller, IEEE trans circ syst I-regular paper 54, No. 6, 1317-1326 (2007)
[14]Chen, M. Y.: Chaos synchronization in complex networks, IEEE trans circ syst I-regular paper 55, No. 5, 1335-1346 (2008)
[15]Sun, W.; Chen, Z.; Lü, Y. B.; Chen, S. H.: An intriguing hybrid synchronization phenomenon of two coupled complex networks, Appl math comput 216, 2301-2309 (2010) · Zbl 1203.93163 · doi:10.1016/j.amc.2010.03.066
[16]Huang, C.; Ho, Daniel W. C.; Lu, J. Q.: Synchronization analysis of a complex network family, Nonlinear anal real world appl 11, 1933-1945 (2010) · Zbl 1188.93009 · doi:10.1016/j.nonrwa.2009.04.016
[17]Wu, W.; Zhou, W. J.; Chen, T. P.: Cluster synchronization of linearly coupled complex networks under pinning control, IEEE trans circ syst I-regular paper 56, No. 4, 829-839 (2009)
[18]Yu, W. W.; Chen, G. R.; Lü, J. H.: On pinning synchronization of complex dynamical networks, Automatica 45, 429-435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[19]Wang, Q. G.; Duan, Z. S.; Chen, G. R.; Feng, Z. S.: Synchronization in a class of weighted complex networks with coupling delays, Physica A 387, 5616-5622 (2008)
[20]Tu, L. L.; Lu, J. A.: Delay-dependent synchronization in general complex delayed dynamical networks, Comput math appl 57, 28-36 (2009) · Zbl 1165.34413 · doi:10.1016/j.camwa.2008.09.034
[21]Zheng, S.; Bi, Q. S.; Cai, G. L.: Adaptive projective synchronization in complex networks with time-varying coupling delay, Phys lett A 373, 1553-1559 (2009) · Zbl 1228.05267 · doi:10.1016/j.physleta.2009.03.001
[22]Wang, B. X.; Guan, Z. H.: Chaos synchronization in general complex dynamical networks with coupling delays, Nonlinear anal real world appl 11, 1925-1932 (2010) · Zbl 1188.93096 · doi:10.1016/j.nonrwa.2009.04.020
[23]Wang, Z. D.; Wang, Y.; Liu, Y. R.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays, IEEE trans neural netw 21, No. 1, 11-25 (2010)
[24]Yang, M.; Wang, Y. W.; Xiao, J. W.; Wang, H. O.: Robust synchronization of impulsively-coupled complex switched networks with parametric uncertainties and time-varying delays, Nonlinear anal real world appl 11, 3008-3020 (2010) · Zbl 1214.93055 · doi:10.1016/j.nonrwa.2009.10.021
[25]Wang, Y. W.; Wang, H. O.; Xiao, J. W.; Guan, Z. H.: Synchronization of complex dynamical networks under recoverable attacks, Automatica 46, 197-203 (2010) · Zbl 1214.93101 · doi:10.1016/j.automatica.2009.10.024
[26]Zhao, J.; Hill, David J.; Liu, T.: Synchronization of complex dynamical networks with switching topology: A switched system point of view, Automatica 45, 2502-2511 (2009) · Zbl 1183.93032 · doi:10.1016/j.automatica.2009.07.013
[27]Peng, H. P.; Wei, N.; Li, L. X.; Xie, W. S.; Yang, Y. X.: Models and synchronization of time-delayed complex dynamical networks with multi-links based on adaptive control, Phys lett A 374, 2335-2339 (2010)
[28]Khalil, H. K.: Nonlinear systems, (2002) · Zbl 1003.34002
[29]Gu, H. B.: Adaptive synchronization for competitive neural networks with different time scales and stochastic perturbation, Neurocomputing 73, 350-356 (2009)
[30]Mao, X. R.: A note on the lasalle-type theorems for stochastic differential delay equations, J math anal appl 268, 125-142 (2002) · Zbl 0996.60064 · doi:10.1006/jmaa.2001.7803