zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mittag-Leffler-Ulam stabilities of fractional evolution equations. (English) Zbl 1246.34012
Summary: We present and discuss four types of Mittag-Leffler-Ulam stability: Mittag-Leffler-Ulam-Hyers stability, generalized Mittag-Leffler-Ulam-Hyers stability, Mittag-Leffler-Ulam-Hyers-Rassias stability and generalized Mittag-Leffler-Ulam-Hyers-Rassias stability for a fractional evolution equation in Banach spaces.
MSC:
34A08Fractional differential equations
34G20Nonlinear ODE in abstract spaces
34D10Stability perturbations of ODE
References:
[1]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[2]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and differential equations, (1993)
[3]Podlubny, I.: Fractional differential equations, (1999)
[4]Agarwal, R. P.; Benchohra, M.; Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[5]Wang, J.; Zhou, Y.: A class of fractional evolution equations and optimal controls, Nonlinear anal. RWA 12, 262-272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
[6]Zhou, Y.; Jiao, F.: Existence of mild solutions for fractional neutral evolution equations, Comput. math. Appl. 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[7]L. Cădariu, Stabilitatea Ulam–Hyers–Bourgin pentru ecuatii functionale, Ed. Univ. Vest Timişoara, Timişara, 2007.
[8]Hyers, D. H.; Isac, G.; Rassias, Th.M.: Stability of functional equations in several variables, (1998)
[9]Jung, S. -M.: Hyers–Ulam–rassias stability of functional equations in mathematical analysis, (2001) · Zbl 0980.39024
[10]Rus, I. A.: Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26, 103-107 (2010) · Zbl 1224.34164
[11]Ye, H.; Gao, J.; Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation, J. math. Anal. appl. 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061