zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. (English) Zbl 1246.65105
Summary: We develop an explicit symmetric linear phase-fitted four-step method with a free coefficient as parameter. The parameter is used for the optimization of the method in order to solve efficiently the Schrödinger equation and related oscillatory problems. We evaluate the local truncation error and the interval of periodicity as functions of the parameter. We reveal a direct relationship between the periodicity interval and the local truncation error. We also measure the efficiency of the new method for a wide range of possible values of the parameter and compare it to other well known methods from the literature. The analysis and the numerical results help us to determine the optimal values of the parameter, which render the new method highly efficient.
MSC:
65L05Initial value problems for ODE (numerical methods)
65L06Multistep, Runge-Kutta, and extrapolation methods
65L12Finite difference methods for ODE (numerical methods)
34A30Linear ODE and systems, general
References:
[1]Ixaru, L. G.; Berghe, G. Vanden: Exponential Fitting, (2004)
[2]Kalogiratou, Z.; Monovasilis, T.; Simos, T. E.: Symplectic integrators for the numerical solution of the Schrödinger equation, Journal of computational and applied mathematics 158, No. 1, 83-92 (2003) · Zbl 1027.65171 · doi:10.1016/S0377-0427(03)00478-3
[3]Kosti, A. A.; Anastassi, Z. A.; Simos, T. E.: An optimized explicit Runge–Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems, Journal of mathematical chemistry 47, No. 1, 315-330 (2010) · Zbl 1200.81052 · doi:10.1007/s10910-009-9571-z
[4]Kosti, A. A.; Anastassi, Z. A.; Simos, T. E.: An optimized explicit Runge–Kutta–Nyström method for the numerical solution of orbital and related periodical initial value problems, Computer physics communications 183, No. 3, 470-479 (2011)
[5]Kosti, A. A.; Anastassi, Z. A.; Simos, T. E.: Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems, Computers and mathematics with applications 61, No. 11, 3381-3390 (2011) · Zbl 1222.65066 · doi:10.1016/j.camwa.2011.04.046
[6]Lambert, J.; Watson, I.: Symmetric multistep methods for periodic initial values problems, Journal of the institute of mathematics and its applications 18, 189-202 (1976) · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[7]Mazzia, F.; Sestini, A.; Trigiante, D.: BS linear multistep methods on non-uniform meshes, Journal of numerical analysis, industrial and applied mathematics (JNAIAM) 1, No. 1, 131-144 (2006) · Zbl 1120.65090
[8]Monovasilis, T.; Kalogiratou, Z.; Simos, T. E.: Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems, Computer physics communications 177, 757-763 (2007) · Zbl 1196.65192 · doi:10.1016/j.cpc.2007.05.020
[9]Panopoulos, G. A.; Anastassi, Z. A.; Simos, T. E.: A symmetric eight-step predictor–corrector method for the numerical solution of the radial Schrödinger equation and related ivps with oscillating solutions, Computer physics communications 182, No. 8, 1626-1637 (2011)
[10]Panopoulos, G. A.; Anastassi, Z. A.; Simos, T. E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems, Communications in mathematical and in computer chemistry (MATCH) 60, 773-785 (2008) · Zbl 1199.65236
[11]Psihoyios, G.; Simos, T. E.: A fourth algebraic order trigonometrically fitted predictor–corrector scheme for ivps with oscillating solutions, Journal of computational and applied mathematics 175, 137-147 (2005) · Zbl 1063.65060 · doi:10.1016/j.cam.2004.06.014
[12]Qaisi, M. I.: Analytical solution of the forced Duffing’s oscillator, Journal of sound and vibration 194, No. 4, 513-520 (1996) · Zbl 1232.70025 · doi:10.1006/jsvi.1996.0375
[13]G.D. Quinlan, Resonances and instabilities in symmetric multistep methods, 1999. arXiv:astro-ph/9901136v1.
[14]Quinlan, G. D.; Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits, The astronomical journal 100, No. 5 (1990)
[15]Raptis, A. D.; Allison, A. C.: Exponential-Fitting methods for the numerical solution of the Schrödinger equation, Computer physics communications 14, No. 1 (1978)
[16]Raptis, A. D.; Simos, T. E.: A four-step phase-fitted method for the numerical integration of second order initial-value problems, Bit 31, 160-168 (1991) · Zbl 0726.65089 · doi:10.1007/BF01952791
[17]Simos, T. E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation, Molecular simulation 31, No. 14–15, 1095-1100 (2005) · Zbl 1082.81027 · doi:10.1080/08927020500371373
[18]Simos, T. E.: An accurate exponentially-fitted explicit four-step method for the numerical solution of the radial Schrödinger equation, International journal of modern physics A 13, 2613-2626 (1998) · Zbl 0929.65043 · doi:10.1142/S0217751X98001347
[19]Simos, T. E.: An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems, Journal of computational and applied mathematics 55, 125-133 (1994) · Zbl 0823.65067 · doi:10.1016/0377-0427(94)90015-9
[20]Simos, T. E.: Dissipative trigonometrically-fitted methods for linear second-order ivps with oscillating solution, Applied mathematics letters 17, No. 5, 601-607 (2004) · Zbl 1062.65075 · doi:10.1016/S0893-9659(04)90133-4
[21]Simos, T. E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation, Acta applicandae mathematicae 110, No. 3, 1331-1352 (2010) · Zbl 1192.65111 · doi:10.1007/s10440-009-9513-6
[22]Simos, T. E.: Exponentially-fitted Runge–Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions, Applied mathematics letters 15, No. 2, 217-225 (2002) · Zbl 1003.65081 · doi:10.1016/S0893-9659(01)00121-5
[23]Simos, T. E.: High-order closed Newton-cotes trigonometrically-fitted formulae for long-time integration of orbital problems, Computer physics communications 178, 199-207 (2008) · Zbl 1196.65194 · doi:10.1016/j.cpc.2007.08.016
[24]Simos, T. E.: Some low-order two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of the radial Schrödinger equation, International journal of modern physics A 10, 2431-2438 (1995)
[25]Simos, T. E.; Williams, P. S.: A finite-difference method for the numerical solution of the Schrödinger equation, Journal of computational and applied mathematics 79, 189-205 (1997) · Zbl 0877.65054 · doi:10.1016/S0377-0427(96)00156-2
[26]Simos, T. E.; Williams, P. S.: Some modified Runge–Kutta methods for the numerical solution of some specific Schrödinger equations and related problems, International journal of modern physics A 11, 4731-4744 (1996) · Zbl 0985.65529 · doi:10.1142/S0217751X96002169
[27]Thomas, R. M.: Phase properties of high order almost P-stable formulae, Bit 24, 225-238 (1984) · Zbl 0569.65052 · doi:10.1007/BF01937488
[28]Anastassi, Z. A.; Simos, T. E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems, Physics reports 482–483, 1-240 (2009)
[29]Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions, (1965)
[30]Ixaru, L.; Rizea, M.: A numerov-like scheme for the numerical-solution of the Schrödinger-equation in the deep continuum spectrum of energies, Computer physics communications 19, 23-27 (1980)
[31]Aceto, L.; Pandolfi, R.; Trigiante, D.: Stability analysis of linear multistep methods via polynomial type variation, Journal of numerical analysis, industrial and applied mathematics (JNAIAM) 2, No. 1–2, 1-9 (2007) · Zbl 1130.65079
[32]Alolyan, I.; Simos, T. E.: A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation, Journal of mathematical chemistry 49, No. 3, 711-764 (2011) · Zbl 1217.65143 · doi:10.1007/s10910-010-9773-4
[33]Alolyan, I.; Simos, T. E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation, Journal of mathematical chemistry 48, No. 4, 925-958 (2010) · Zbl 1202.81027 · doi:10.1007/s10910-010-9718-y
[34]Alolyan, I.; Simos, T. E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation, Journal of mathematical chemistry 48, No. 4, 1092-1143 (2010) · Zbl 1202.81028 · doi:10.1007/s10910-010-9728-9
[35]Alolyan, I.; Simos, T. E.: On eight-step methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation, Communications in mathematical and in computer chemistry (MATCH) 66, No. 2, 473-546 (2011)
[36]Amodio, P.; Sgura, I.: High order finite difference schemes for the solution of second order BVPs, Journal of computational and applied mathematics 176, 59-76 (2005) · Zbl 1073.65061 · doi:10.1016/j.cam.2004.07.008
[37]Amodio, P.; Iavernaro, F.: Symmetric boundary value methods for second order initial and boundary value problems, Mediterranean journal of mathematics 3, 383-398 (2006) · Zbl 1117.65107 · doi:10.1007/s00009-006-0085-7
[38]Anastassi, Z. A.: A new symmetric linear eight-step method with fifth trigonometric order for the efficient integration of the Schrödinger equation, Applied mathematics letters 24, No. 8, 1468-1472 (2011) · Zbl 1217.65144 · doi:10.1016/j.aml.2011.03.035
[39]Anastassi, Z. A.; Simos, T. E.: A family of exponentially-fitted Runge–Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation, Journal of mathematical chemistry 41, 79-100 (2007) · Zbl 1125.81017 · doi:10.1007/s10910-006-9071-3
[40]Anastassi, Z. A.; Simos, T. E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation, Communications in mathematical and in computer chemistry (MATCH) 60, 733-752 (2008) · Zbl 1199.65228
[41]Anastassi, Z. A.; Simos, T. E.: A six-step p-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation, Communications in mathematical and in computer chemistry (MATCH) 60, No. 3, 803-830 (2008) · Zbl 1199.65229
[42]Anastassi, Z. A.; Simos, T. E.: Trigonometrically fitted fifth order Runge–Kutta methods for the numerical solution of the Schrödinger equation, Mathematical and computer modelling 42, No. 7–8, 877-886 (2005) · Zbl 1085.65063 · doi:10.1016/j.mcm.2005.09.016
[43]Anastassi, Z. A.; Simos, T. E.: Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation, Journal of mathematical chemistry 37, 281-293 (2005) · Zbl 1070.81035 · doi:10.1007/s10910-004-1470-8
[44]Capper, S. D.; Cash, J. R.; Moore, D. R.: Lobatto-obrechkoff formulae for 2nd order two-point boundary value problems, Journal of numerical analysis, industrial and applied mathematics (JNAIAM) 1, No. 1, 13-25 (2006) · Zbl 1108.65080
[45]Coleman, J.; Ixaru, L.: P-stability and exponential-Fitting methods for y”=f(x,y), IMA journal of numerical analysis 16, 179-199 (1996) · Zbl 0847.65052 · doi:10.1093/imanum/16.2.179
[46]Van De Vyver, H.: Phase-fitted and amplification-fitted two-step hybrid methods for y”=f(x,y), Journal of computational and applied mathematics 209, No. 1, 33-53 (2007)
[47]Vigo-Aguiar, J.; Ferrandiz, J. M.; Simos, T. E.: Encke methods adapted to regularizing variables, International journal of modern physics A 25, 3993-4010 (2000) · Zbl 0970.70014 · doi:10.1142/S0217751X00002275
[48]Wang, Z.: P-stable linear symmetric multistep methods for periodic initial-value problems, Computer physics communications 171, 162-174 (2005) · Zbl 1196.65113 · doi:10.1016/j.cpc.2005.05.004