zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A numerical solution to nonlinear second order three-point boundary value problems in the reproducing kernel space. (English) Zbl 1246.65122
Summary: A new numerical algorithm is provided to solve nonlinear three-point boundary value problems in a very favorable reproducing kernel space which satisfies all boundary conditions. Its reproducing kernel function is discussed in detail. We also prove that the approximate solution and its first and second order derivatives all converge uniformly. The numerical experiments show that the algorithm is quite accurate and efficient for solving nonlinear second order three-point boundary value problems.
65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
34B10Nonlocal and multipoint boundary value problems for ODE
46E22Hilbert spaces with reproducing kernels
[1]Dulácska, E.: Soil settlement effects on buildings, (1992)
[2]Soedel, W.: Vibrations of shells and plates, (1993) · Zbl 0865.73002
[3]Henderson, J.; Tisdell, C. C.: Dynamic boundary value problems of the second-order: Bernstein – Nagumo conditions and solvability, Nonlinear anal. 67, 1374-1386 (2007) · Zbl 1123.34009 · doi:10.1016/j.na.2006.07.023
[4]Zhang, Z.; Wang, J.: Positive solutions to a second order three-point boundary value problem, J. math. Anal. appl. 285, 237-249 (2003) · Zbl 1035.34011 · doi:10.1016/S0022-247X(03)00396-2
[5]Infante, G.; Webb, J. R. L.: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations, Proc. Edinburgh math. Soc. 49, 637-656 (2006) · Zbl 1115.34026 · doi:10.1017/S0013091505000532
[6]Webb, J. R. L.; Infante, G.: Nonlocal boundary value problems of arbitrary order, J. London math. Soc. 79, 238-258 (2009) · Zbl 1165.34010 · doi:10.1112/jlms/jdn066
[7]Li, F. F.; Jia, M.; Liu, X. P.; Li, Chunling: Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order, Nonlinear anal. 68, 2381-C2388 (2008)
[8]Geng, F. Z.: Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. math. Comput. 215, 2095-C2102 (2009) · Zbl 1178.65085 · doi:10.1016/j.amc.2009.08.002
[9]Zhao, Z. Q.: Existence of fixed points for some convex operators and applications to multi-point boundary value problems, Appl. math. Comput. 215, 2971-C2977 (2009) · Zbl 1225.47075 · doi:10.1016/j.amc.2009.09.044
[10]Ji, Y. D.; Guo, Y. P.; Zhang, J. H.: Positive solutions for second-order quasilinear multi-point boundary value problems, Appl. math. Comput. 189, 725-C731 (2007) · Zbl 1126.34319 · doi:10.1016/j.amc.2006.11.156
[11]Du, Z. J.; Bai, Z. B.: Asymptotic solutions for a second-order differential equation with three-point boundary conditions, Appl. math. Comput. 186, 469-C473 (2007)
[12]Saadatmandi, A.; Dehghan, M.: The use of sinc-collocation method for solving multi-point boundary value problems, Commun. nonlinear. Sci. numer. Simul. 17, 593-C601 (2012)
[13]Dehghan, M.; Shokri, A.: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions, Numer. algor. 52, 461-C477 (2009)
[14]Shakeri, F.; Dehghan, M.: The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, Comput. math. Appl. 56, 2175-2188 (2008) · Zbl 1165.65384 · doi:10.1016/j.camwa.2008.03.055
[15]Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. methods part. Diff. eqs. 21, 24-40 (2005) · Zbl 1059.65072 · doi:10.1002/num.20019
[16]Dehghan, M.: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications, Appl. numer. Math. 52, 39-62 (2005) · Zbl 1063.65079 · doi:10.1016/j.apnum.2004.02.002
[17]Dehghan, M.: The one-dimensional heat equation subject to a boundary integral specification, Chaos soliton fract. 32, 661-675 (2007) · Zbl 1139.35352 · doi:10.1016/j.chaos.2005.11.010
[18]Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numer. methods part. Diff. eqs. 22, 220-257 (2006) · Zbl 1084.65099 · doi:10.1002/num.20071
[19]Hajji, M. A.: A numerical scheme for multi-point special boundary-value problems and application to fluid flow through porous layers, Appl. math. Comput. 217, 5632-C5642 (2011)
[20]Dehghan, M.: Numerical techniques for a parabolic equation subject to an overspecified boundary condition, Appl. math. Comput. 132, 299-313 (2002) · Zbl 1024.65088 · doi:10.1016/S0096-3003(01)00194-1
[21]Tatari, M.; Dehghan, M.: The use of the Adomian decomposition method for solving multi-point boundary value problems, Phys. scr. 73, 672-676 (2006)
[22]M. Tatari, M. Dehghan, An efficient method for solving multi-point boundary value problems and applications in physics, J. Vib. Control, in press. doi:10.1177/1077546311408467.
[23]Cui, M. G.; Lin, Y. Z.: Nonlinear numerical analysis in reproducing kernel Hilbert space, (2009)