zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical treatment of a nonlocal model for phytoplankton aggregation. (English) Zbl 1246.65148
Summary: We are interested in the numerical treatment of a nonlinear model describing phytoplankton aggregation. The model consists in an integro-differential diffusion equation, with a chemotaxis term responsible for self-attraction of phytoplankton cells. We develop and implement a numerical scheme to solve this nonlinear PDE and present numerical solutions for parameters values corresponding to real conditions in nature. The numerical results emphasize the role of the nonlinear chemotaxis term in producing aggregating patterns and further, they are used to explore the asymptotic behavior of the model.
MSC:
65M06Finite difference methods (IVP of PDE)
92-08Computational methods (appl. to natural sciences)
35Q92PDEs in connection with biology and other natural sciences
92D25Population dynamics (general)
References:
[1]Ackleh, A. S.; Hallam, T. G.; Muller-Landau, H. C.: Estimation of sticking and contact efficiencies in aggregation of phytoplankton: the 1993 SIGMA tank experiment, Deep-sea res. II 42, 185-201 (1995)
[2]Ackleh, A. S.; Fitzpatrick, B. G.: Modeling aggregation and growth processes in an algal population model: analysis and computation, J. math. Biol. 35, 480-502 (1997) · Zbl 0867.92024 · doi:10.1007/s002850050062
[3]Adioui, M.; Arino, O.; El Saadi, N.: A nonlocal model of phytoplankton aggregation, Nonlinear anal. Real world appl. 6, 593-607 (2005) · Zbl 1077.35059 · doi:10.1016/j.nonrwa.2004.12.007
[4]Arino, O.; Rudnicki, R.: Phytoplankton dynamics, CR biol. 327, 961-969 (2004)
[5]Berg, H. C.; Purcell, E. M.: Physics of chemoreception, Biophys. J. 20, 193-219 (1977)
[6]Crespi, B. J.: The evolution of social behavior in microorganisms, Trends ecol. Evol. 16, No. 4, 178-183 (2001)
[7]El Saadi, N.; Bah, A.: On phytoplankton aggregation: a view from an IBM approach, CR biol. 329, 669-678 (2006)
[8]El Saadi, N.; Bah, A.: An individual-based model for studying the aggregation behavior in phytoplankton, Ecol. model. 204, 193-212 (2007)
[9]N. El Saadi, Modélisation et études mathé matique et informatique de populations structurées par des variables al éatoires, Application à l’agrégation du phytoplancton, Thèse de Doctorat de l’université de Pau et des pays de l’Adour, 2004.
[10]Fitt, W. K.: The role of chemosensory behavior of symbiodinium microadriatica intermediate hosts, and host behavior in the infection of coelenterates and molluscs with zooxanthellae, Mar. biol. 81, 9-17 (1984)
[11]Fitt, W. K.: Chemosensory responses of the symbiotic dinoflagellate symbiodinium microadriatica (Dinophycae), J. phycol. 21, 62-67 (1985)
[12]Hauser, D. C.; Levandowsky, R. M.; Hunter, S. H.; Chunosoff, L.; Hollwitz, J. S.: Chemosensory responses by the heterotrophid marine dinoflagellate crypthecodinium cohnii, Microbial ecol. 1, 246-254 (1975)
[13]Hill, P. S.: Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms, J. geophys. Res. 97, 2295-2308 (1992)
[14]Hundsdorfer, W.; Verwer, J.: Numerical solution of time-dependent advection – diffusion reaction equations, (2003)
[15]Jackson, G. A.: A model of the formation of marine algal flocs by physical coagulation processes, Deep-sea res. 37, 1197-1211 (1990)
[16]Keller, K. F.; Segel, L. A.: Model for chemotaxis, J. theor. Biol. 30, 225-234 (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[17]Kriest, I.; Evans, G. T.: Representing phytoplankton aggregates in biogeochemical models, Deep-sea res. I 46, 1841-1859 (1999)
[18]Kriest, I.; Evans, G. T.: A vertically resolved model for phytoplankton aggregation, Pro. indian acad. Sci. (Earth planet. Sci.) 109, No. 4, 453-469 (2000)
[19]R. Lapidus, M. Levandowsky, Mathematical models of behavioral responses to sensory stimuli by protozoa, in: M. Levandowsky and H. Hutner (Eds.), Biochemistry and physiologyof protozoa, Academic, 2nd ed. vol. 4. 1981, pp. 235 – 260.
[20]Levandowsky, M.; Hauser, D. C. R.: Chemosensory responses of swimming algae and protozoa, Int. rev. Cytol. 53, 145-210 (1978)
[21]Levandowsky, M.; Kaneta, P. J.: Behaviour in dinoflagellates, The biology of dinoflagellates, 360-398 (1987)
[22]Mague, T. H.; Friberg, E.; Hughes, D. J.; Morris, I.: Extracellular release of carbon by marine phytoplankton: a physiological approach, Limnol. oceanogr. 25, 262-279 (1980)
[23]Riebesell, U.: The formation of large marine snow and its sustained residence in surface waters, Limnol. oceanogr. 37, 63-76 (1992)
[24]Riebesell, U.; Wolf-Gladrow, D. A.: The relationship between physical aggregation of phytoplankton and particle flux, Deep-sea res. I, No. 39, 1085-1102 (1992)
[25]Rudnicki, R.; Wieczorek, R.: Fragmentation – coagulation models of phytoplankton, Bull. Pol acad. Sci. math. 54, 175-191 (2006) · Zbl 1105.60076 · doi:10.4064/ba54-2-9
[26]Rudnicki, R.; Wieczorek, R.: Phytoplankton dynamics: from the behavior of cells to a transport equation, Math. model. Natural phenomena 1, 749-760 (2006) · Zbl 1201.92062 · doi:10.1051/mmnp:2006005
[27]H.J. Spero, A study of the life-cycle, Feeding and chemosensory behavior in the holozoic dinoflagellate Gymnodinium fungiforme Anissimova, M.A. Thesis, Texas Aamp;M, 1979, p. 95.
[28]Spero, H. J.; Morée, M.: Phagotrophic feeding and its importance to the life cycle of the holozoic dinoflagellate gymnodinium fungiforme, J. phycol. 17, 43-51 (1981)
[29]Spero, H. J.: Chemosensory capabilities in the phagotrophic dinoflagellate gymnodinium fungiforme, J. phycol. 21, 181-184 (1985)
[30]Wolfe, G. V.: The chemical defense ecology of marine unicellular plankton: constraints mechanisms and impacts, Biol. bull. 198, 225-244 (2000)