zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The application of the homotopy perturbation method and the homotopy analysis method to the generalized Zakharov equations. (English) Zbl 1246.65193
Summary: We introduce two powerful methods to solve the generalized Zakharov (GZ) equations; one is the homotopy perturbation method (HPM) and the other is the homotopy analysis method (HAM). The homotopy perturbation method is proposed for solving the generalized Zakharov equations. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions; the homotopy analysis method is applied to solve the generalized Zakharov equations. HAM is a strong and easy-to-use analytic tool for nonlinear problems. Computation of the absolute errors between the exact solutions of the GZ equations and the approximate solutions, comparison of the HPM results with those of Adomian’s decomposition method and the HAM results, and computation the absolute errors between the exact solutions of the GZ equations with the HPM solutions and HAM solutions are presented.
MSC:
65M99Numerical methods for IVP of PDE
35Q53KdV-like (Korteweg-de Vries) equations
35Q35PDEs in connection with fluid mechanics
65M15Error bounds (IVP of PDE)