zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive modified function projective synchronization of unknown chaotic systems with different order. (English) Zbl 1246.65243
Summary: This paper investigates the modified function projective synchronization (MFPS) between two different dimensional chaotic systems with fully unknown or partially unknown parameters via increased order. Based on the Lyapunov stability theorem and adaptive control method, a unified adaptive controller and parameters update law can be designed for achieving the MFPS of the two different chaotic systems with different orders. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme.
65P20Numerical chaos
65L05Initial value problems for ODE (numerical methods)
37D45Strange attractors, chaotic dynamics
65L20Stability and convergence of numerical methods for ODE
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990)
[2]Agiza, H. N.: Chaos synchronization of Lü dynamical system, Nonlinear anal. 58, 11-20 (2004) · Zbl 1057.34042 · doi:10.1016/j.na.2004.04.002
[3]Cai, G. L.; Zheng, S.; Tian, L. X.: Adaptive control and synchronization of an uncertain new hyperchaotic Lorenz system, Chin. phys. B 17, 2412-2419 (2008)
[4]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys. rev. Lett. 76, 1804-1807 (1996)
[5]Chen, Y.; Chen, X. X.; Gu, S. S.: Lag synchronization of structurally nonequivalent chaotic systems with time delay, Nonlinear anal. 66, 1929-1937 (2007) · Zbl 1123.34336 · doi:10.1016/j.na.2006.02.033
[6]Wang, Y. W.; Guan, Z. H.: Generalized synchronization of continuous chaotic system, Chaos soliton. Fract. 27, 97-101 (2006) · Zbl 1083.37515 · doi:10.1016/j.chaos.2004.12.038
[7]Wang, Z. L.: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters, Commun. nonlinear sci. Numer. simulat. 14, 2366-2372 (2009)
[8]Al-Sawalha, M. Mossa; Noorani, M. S. M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun. nonlinear sci numer. Simulat. (2009)
[9]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensioned chaotic systems, Phys. rev. Lett. 82, 3042-3045 (1999)
[10]Jia, Q.: Projective synchronization of a new hyperchaotic Lorenz system, Phys. lett. A 370, 40-45 (2007) · Zbl 1209.93105 · doi:10.1016/j.physleta.2007.05.028
[11]Wang, Z. L.: Projective synchronization of hyperchaotic Lü system and Liu system, Nonlinear dynam. (2009)
[12]Li, G. H.: Modified projective synchronization of chaotic system, Chaos soliton. Fract. 32, 1786-1790 (2007) · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[13]Luo, R. Z.: Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters, Phys. lett. A 372, 3667-3671 (2008) · Zbl 1220.37025 · doi:10.1016/j.physleta.2008.02.035
[14]Du, H. Y.; Zeng, Q. S.; Wang, C. H.: Function projective synchronization of different chaotic systems with uncertain parameters, Phys. lett. A 372, 5402-5410 (2008) · Zbl 1223.34077 · doi:10.1016/j.physleta.2008.06.036
[15]R. Luo, Z. Wei, Adaptive function projective synchronization of unified chaotic systems with uncertain parameters, Chaos Soliton. Fract. doi:10.1016/j.chaos.2009.03.076.
[16]Du, H.; Zeng, Q.; Wang, C.: Modified function projective synchronization of chaotic system, Chaos soliton. Fract. (2009)
[17]Bazhenov, M.; Huerta, R.; Rabinovich, Mi.; Sejnowski, T.: Cooperative behavior of a chain of synaptically coupled chaotic neurons, Phys. D 116, 392-400 (1998) · Zbl 0917.92004 · doi:10.1016/S0167-2789(98)80014-6
[18]Ho, M. C.; Hung, Y.; Liua, Z.; Jiang, I.: Reduced-order synchronization of chaotic systems with parameters unknown, Phys. lett. A 348, 251-259 (2006)
[19]Konnur, R.: Synchronization-based approach for estimating all model parameters of chaotic systems, Phys. rev. E 67, 027204 (2003)
[20]Huang, D.: Synchronization-based estimation of all parameters of chaotic systems from time series, Phys. rev. E 69, 067201 (2004)
[21]Chen, C.; Feng, G.; Guan, X.: Parameter identification based synchronization for a class of chaotic systems with offset vectors, Phys. lett. A 330, 65-74 (2005) · Zbl 1209.93036 · doi:10.1016/j.physleta.2004.07.047
[22]Yu, W.; Chen, G.; Cao, J.; Lu, J.; Parlitz, U.: Parameter identification of dynamical systems from time series, Phys. rev. E 75, 067201 (2007)
[23]Lin, W.; Ma, H. F.: Failure of parameter identification based on adaptive synchronization techniques, Phys. rev. E 75, 066212 (2007)
[24]Cai, G. L.; Zheng, S.; Tian, L. X.: A new hyperchaotic system and its linear feedback control, Chin. phys. B 17, 4039-4046 (2008)
[25]Lü, J. H.; Chen, G.: A new chaotic attractor coined, Int. J. Bifurcat. chaos 12, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[26]Lorenz, E. N.: Deterministic nonperiodic flow, J. atmos. Sci. 20, No. 2, 130-141 (1963)