zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive consensus algorithms for second-order multi-agent networks with sampled information. (English) Zbl 1246.93007
Summary: In this paper, the distributed consensus problem for second-order continuous-time multi-agent networks with sampled-data communication is investigated. Motivated by impulsive control strategy, two kinds of impulsive distributed consensus algorithm are proposed. These algorithms only utilize the sampled information and are implemented at sampled times. By using the stability theory of impulsive systems and properties of the Laplacian matrix, necessary and sufficient conditions are obtained to ensure the consensus of the controlled networks. It is shown that the control gains, the sampling period and the eigenvalues of the Laplacian matrix of the communication graph play key roles in achieving the consensus. A numerical example is given to illustrate the results.
93A14Decentralized systems
68T45Machine vision and scene understanding
93C55Discrete-time control systems
94C15Applications of graph theory to circuits and networks
[1]Bullo, F.; Cortés, J.; Martínez, S.: Distributed control of robotic networks, Ser. applied mathematics series (2009)
[2]Cao, Y.; Ren, W.: Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting, International journal of robust and nonlinear control 20, No. 9, 987-1000 (2010)
[3]Cao, Y.; Ren, W.: Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction, International journal of control 83, No. 3, 506-515 (2010) · Zbl 1222.93146 · doi:10.1080/00207170903214338
[4]Carli, R.; Chiuso, A.; Schenato, L.; Zampieri, S.: Distributed Kalman filtering based on consensus strategies, IEEE journal on selected areas in communications 26, No. 4, 622-633 (2008)
[5]Chen, F.; Chen, Z.; Xiang, L.; Liu, Z.; Yuan, Z.: Reaching a consensus via pinning control, Automatica 45, No. 5, 1215-1220 (2009) · Zbl 1162.93305 · doi:10.1016/j.automatica.2008.12.027
[6]Gao, Y.; Wang, L.: Asynchronous consensus of continuous-time multi-agent systems with intermittent measurements, International journal of control 83, No. 3, 552-562 (2010) · Zbl 1222.93009 · doi:10.1080/00207170903297192
[7]Gao, Y.; Wang, L.: Consensus of multiple double-integrator agents with intermittent measurement, International journal of robust and nonlinear control 20, No. 10, 1140-1155 (2010) · Zbl 1200.93094 · doi:10.1002/rnc.1496
[8]Guan, Z.; Chen, G.; Ueta, T.: On impulsive control of a periodically forced chaotic pendulum system, IEEE transactions on automatic control 45, No. 9, 1724-1727 (2000) · Zbl 0990.93105 · doi:10.1109/9.880633
[9]Guan, Z.; Hill, D.; Shen, X.: On hybrid impulsive and switching systems and application to nonlinear control, IEEE transactions on automatic control 50, No. 7, 1058-1062 (2005)
[10]Guan, Z.; Liu, Z.; Feng, G.; Wang, Y.: Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE transactions on circuits and systems I: Regular papers 57, No. 8, 2182-2195 (2010)
[11]Hayakawa, T., Matsuzawa, T., & Hara, S. (2006). Formation control of multi-agent systems with sampled information–relationship between information exchange structure and control performance. In 45th IEEE conference on decision and control. (pp. 4333–4338).
[12]Huang, M.; Manton, J.: Coordination and consensus of networked agents with noisy measurements: stochastic algorithms and asymptotic behavior, SIAM journal on control and optimization 48, No. 1, 134-161 (2009) · Zbl 1182.93108 · doi:10.1137/06067359X
[13]Hui, Q.; Haddad, W.; Bhat, S.: On robust control algorithms for nonlinear network consensus protocols, Internatonal journal of robust and nonlinear control 20, No. 3, 269-284 (2010) · Zbl 1185.93108 · doi:10.1002/rnc.1426
[14]Jadbabaie, A.; Lin, J.; Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 100-988 (2003)
[15]Jiang, H.; Bi, Q.: Impulsive synchronization of networked nonlinear dynamical systems, Physics letters A 374, No. 27, 1503-1509 (2010)
[16]Jiang, H.; Bi, Q.; Zheng, S.: Impulsive consensus in directed networks of identical nonlinear oscillators with switching topologies, Communications in nonlinear science and numerical simulation 17, No. 1, 378-387 (2012)
[17]Jiang, H.; Yu, J.; Zhou, C.: Consensus of multi-agent linear dynamic systems via impulsive control protocols, International journal of systems science 42, No. 6, 967-976 (2011) · Zbl 1233.93005 · doi:10.1080/00207720903267866
[18]Kashyap, A.; Basar, T.; Srikant, R.: Quantized consensus, Automatica 43, No. 7, 1192-1203 (2007) · Zbl 1123.93090 · doi:10.1016/j.automatica.2007.01.002
[19]Lakshmikantham, V.; Bainov, D.; Simeonov, P.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[20]Lin, Z.; Francis, B.; Maggiore, M.: State agreement for continuous-time coupled nonlinear systems, SIAM journal on control and optimization 46, No. 1, 288-307 (2007) · Zbl 1141.93032 · doi:10.1137/050626405
[21]Lin, P.; Jia, Y.: Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies, Automatica 45, No. 9, 2154-2158 (2009) · Zbl 1175.93078 · doi:10.1016/j.automatica.2009.05.002
[22]Liu, H.; Xie, G.; Wang, L.: Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control, International journal of robust and nonlinear control 20, No. 15, 1706-1722 (2010) · Zbl 1204.93080 · doi:10.1002/rnc.1543
[23]Li, T.; Zhang, J.: Sampled-data based average consensus with measurement noises: convergence analysis and uncertainty principle, Science in China serises F-information sciences 52, No. 11, 2089-2103 (2009) · Zbl 1182.93083 · doi:10.1007/s11432-009-0177-7
[24]Ogata, K.: Discrete-time control systems, (1995)
[25]Olfati-Saber, R.; Fax, J.; Murray, R.: Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE 95, No. 1, 215-233 (2007)
[26]Olfati-Saber, R.; Murray, R.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transation on automatic control 49, No. 9, 1520-1533 (2004)
[27]Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transation on automatic control 53, No. 6, 1503-1509 (2008)
[28]Wang, L.; Huang, L.; Hollot, C.: On the robust stability of polynomials and related topics, Systems science and mathematical science 5, No. 1, 42-54 (1992) · Zbl 0759.93063
[29]Xiao, F.; Wang, L.: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE transactions on automatic control 53, No. 8, 1804-1816 (2008)
[30]Yang, T.: Impulsive control theory, (2001)
[31]Yu, W.; Chen, G.; Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica 46, No. 6, 1089-1095 (2010) · Zbl 1192.93019 · doi:10.1016/j.automatica.2010.03.006
[32]Yu, W.; Zheng, W.; Chen, G.; Ren, W.; Cao, J.: Second-order consensus inmulti-agent dynamical systems with sampled position data, Automatica 47, No. 7, 1496-1503 (2011) · Zbl 1220.93005 · doi:10.1016/j.automatica.2011.02.027
[33]Zhang, Q.; Chen, S.; Yu, C.: Impulsive consensus problem of second-order multi-agent systems with switching topologies, Communications in nonlinear science and numerical simulation 17, No. 1, 9-16 (2012)
[34]Zhang, Y.; Tian, Y.: Consensus of data-sampled multi-agent systems with random communication delay and packet loss, IEEE transactions on automatic control 55, No. 4, 939-943 (2010)