zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative parameter identification methods for nonlinear functions. (English) Zbl 1246.93114
Summary: This paper considers identification problems of nonlinear functions fitting or nonlinear systems modelling. A gradient based iterative algorithm and a Newton iterative algorithm are presented to determine the parameters of a nonlinear system by using the negative gradient search method and Newton method. Furthermore, two model transformation based iterative methods are proposed in order to enhance computational efficiencies. By means of the model transformation, a simpler nonlinear model is achieved to simplify the computation. Finally, the proposed approaches are analyzed using a numerical example.
MSC:
93E11Filtering in stochastic control
65K05Mathematical programming (numerical methods)
93B30System identification
41A05Interpolation (approximations and expansions)
65H05Single nonlinear equations (numerical methods)
65J22Inverse problems (numerical methods in abstract spaces)
90C90Applications of mathematical programming
References:
[1]Zhang, Y.; Cui, G. M.: Bias compensation methods for stochastic systems with colored noise, Applied mathematical modelling 35, No. 4, 1709-1716 (2011) · Zbl 1217.93163 · doi:10.1016/j.apm.2010.10.003
[2]Zhang, Y.: Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods, Mathematical and computer modelling 53, No. 9-10, 1810-1819 (2011) · Zbl 1219.93141 · doi:10.1016/j.mcm.2010.12.059
[3]Ding, F.; Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations, IEEE transactions on automatic control 50, No. 8, 1216-1221 (2005)
[4]Ding, F.; Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations, Systems & control letters 54, No. 2, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[5]Ding, F.; Chen, T.: On iterative solutions of general coupled matrix equations, SIAM journal on control and optimization 44, No. 6, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[6]Ding, F.; Liu, P. X.; Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Applied mathematics and computation 197, No. 1, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040
[7]Xie, L.; Ding, J.; Ding, F.: Gradient based iterative solutions for general linear matrix equations, Computers & mathematics with applications 58, No. 7, 1441-1448 (2009) · Zbl 1189.65083 · doi:10.1016/j.camwa.2009.06.047
[8]Ding, F.: Transformations between some special matrices, Computers & mathematics with applications 59, No. 8, 2676-2695 (2010) · Zbl 1193.15028 · doi:10.1016/j.camwa.2010.01.036
[9]Ding, J.; Liu, Y. J.; Ding, F.: Iterative solutions to matrix equations of form aixbi=Fi, Computers & mathematics with applications 59, No. 11, 3500-3507 (2010)
[10]Xie, L.; Liu, Y. J.; Yang, H. Z.: Gradient based and least squares based iterative algorithms for matrix equations AXB+CXTD=F, Applied mathematics and computation 217, No. 5, 2191-2199 (2010) · Zbl 1210.65097 · doi:10.1016/j.amc.2010.07.019
[11]Zhang, Z. N.; Ding, F.; Liu, X. G.: Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems, Computers and mathematics with applications 61, No. 3, 672-682 (2011) · Zbl 1217.15022 · doi:10.1016/j.camwa.2010.12.014
[12]Ding, F.; Liu, P. X.; Liu, G. J.: Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digital signal processing 20, No. 3, 664-677 (2010)
[13]Dehghan, M.; Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Applied mathematical modelling 34, No. 3, 639-654 (2010) · Zbl 1185.65054 · doi:10.1016/j.apm.2009.06.018
[14]Dehghan, M.; Hajarian, M.: An efficient algorithm for solving general coupled matrix equations and its application, Mathematical and computer modelling 51, No. 9-10, 1118-1134 (2010) · Zbl 1208.65054 · doi:10.1016/j.mcm.2009.12.022
[15]Ahmadi, M.; Mojallali, H.: Identification of multiple-input single-output Hammerstein models using Bézier curves and Bernstein polynomials, Applied mathematical modelling 35, No. 4, 1969-1982 (2011) · Zbl 1217.93171 · doi:10.1016/j.apm.2010.11.008
[16]Habbi, H.; Kidouche, M.; Zelmat, M.: Data-driven fuzzy models for nonlinear identification of a complex heat exchanger, Applied mathematical modelling 35, No. 3, 1470-1482 (2011) · Zbl 1211.93077 · doi:10.1016/j.apm.2010.09.023
[17]Ding, F.; Liu, P. X.; Liu, G.: Identification methods for Hammerstein nonlinear systems, Digital signal processing 21, No. 2, 215-238 (2011)
[18]Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein – Wiener ARMAX systems, Computers & mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
[19]Vörös, J.: Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Systems & control letters 56, No. 2, 99-105 (2007) · Zbl 1112.93019 · doi:10.1016/j.sysconle.2006.08.001
[20]Ding, F.; Shi, Y.; Chen, T.: Auxiliary model-based least-squares identification methods for Hammerstein output-error systems, Systems & control letters 56, No. 5, 373-380 (2007) · Zbl 1130.93055 · doi:10.1016/j.sysconle.2006.10.026
[21]Ding, F.; Chen, T.: Identification of Hammerstein nonlinear ARMAX systems, Automatica 41, No. 9, 1479-1489 (2005) · Zbl 1086.93063 · doi:10.1016/j.automatica.2005.03.026
[22]Chen, J.; Zhang, Y.; Ding, R. F.: Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems, Mathematical and computer modelling 52, No. 9-10, 1428-1434 (2010) · Zbl 1205.93142 · doi:10.1016/j.mcm.2010.05.026
[23]Wang, D. Q.; Chu, Y. Y.; Ding, F.: Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Computers & mathematics with applications 59, No. 9, 3092-3098 (2010) · Zbl 1193.93170 · doi:10.1016/j.camwa.2010.02.030
[24]Wang, D. Q.; Chu, Y. Y.; Yang, G. W.; Ding, F.: Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems, Mathematical and computer modelling 52, No. 1-2, 309-317 (2010) · Zbl 1201.93134 · doi:10.1016/j.mcm.2010.03.002
[25]Wang, W.; Li, J. H.; Ding, R. F.: Maximum likelihood identification algorithm for controlled autoregressive models, International journal of computer mathematics (2011)
[26]Wang, W.; Ding, F.; Dai, J. Y.: Maximum likelihood least squares identification for systems with autoregressive moving average noise, Applied mathematical modelling 36, No. 5, 1842-1853 (2012)
[27]Cordero, A.; Hueso, J.; Martínez, E.; Torregrosa, J. R.: Iterative methods for use with nonlinear discrete algebraic models, Mathematical and computer modelling 52, No. 7-8, 1251-1257 (2010) · Zbl 1205.65169 · doi:10.1016/j.mcm.2010.02.028
[28]Golbabai, A.; Javidi, M.: Newton-like iterative methods for solving system of non-linear equations, Applied mathematics and computation 192, No. 2, 546-551 (2007) · Zbl 1193.65149 · doi:10.1016/j.amc.2007.03.035
[29]J.H. Li, F. Ding. Parameter fitting for nonlinear systems. The 2011 Chinese Control and Decision Conference (2011 CCDC), May 23 – 25, 2011, Mianyang, China, pp. 1085 – 1090.
[30]Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[31]Liu, Y. J.; Xiao, Y. S.; Zhao, X. L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied mathematics and computation 215, No. 4, 1477-1483 (2009) · Zbl 1177.65095 · doi:10.1016/j.amc.2009.07.012
[32]Han, L. L.; Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing 19, No. 4, 545-554 (2009)
[33]Ding, F.; Liu, P. X.; Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing 89, No. 10, 1883-1890 (2009) · Zbl 1178.94137 · doi:10.1016/j.sigpro.2009.03.020
[34]Zhang, J. B.; Ding, F.; Shi, Y.: Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems & control letters 58, No. 1, 69-75 (2009) · Zbl 1154.93040 · doi:10.1016/j.sysconle.2008.08.005
[35]Ding, F.; Liu, P. X.; Liu, G.: Multi-innovation least squares identification for system modeling, IEEE transactions on systems, man, and cybernetics, part B: cybernetics 40, No. 3, 767-778 (2010)
[36]Ding, F.: Several multi-innovation identification methods, Digital signal processing 20, No. 4, 1027-1039 (2010)
[37]Wang, D. Q.; Ding, F.: Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems, Digital signal processing 20, No. 3, 750-762 (2010)
[38]Ding, F.; Chen, T.: Identification of dual-rate systems based on finite impulse response models, International journal of adaptive control and signal processing 18, No. 7, 589-598 (2004) · Zbl 1055.93018 · doi:10.1002/acs.820
[39]Ding, F.; Chen, T.: Least squares based self-tuning control of dual-rate systems, International journal of adaptive control and signal processing 18, No. 8, 697-714 (2004) · Zbl 1055.93044 · doi:10.1002/acs.828
[40]Ding, F.; Chen, T.: Combined parameter and output estimating of dual-rate systems using an auxiliary model, Automatica 40, No. 10, 1739-1748 (2004) · Zbl 1162.93376 · doi:10.1016/j.automatica.2004.05.001
[41]Ding, F.; Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control 50, No. 9, 1436-1441 (2005)
[42]Ding, F.; Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems – I: Regular papers 52, No. 6, 1179-1187 (2005)
[43]Ding, F.; Chen, T.: A gradient based adaptive control algorithm for dual-rate systems, Asian journal of control 8, No. 4, 314-323 (2006)
[44]Ding, F.; Chen, T.; Iwai, Z.: Adaptive digital control of Hammerstein nonlinear systems with limited output sampling, SIAM journal on control and optimization 45, No. 6, 2257-2276 (2007) · Zbl 1126.93034 · doi:10.1137/05062620X
[45]Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[46]Liu, Y. J.; Xie, L.; Ding, F.: An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the institution of mechanical engineers, part I: Journal of systems and control engineering 223, No. 4, 445-454 (2009)
[47]Shi, Y.; Yu, B.: Output feedback stabilization of networked control systems with random delays modeled by Markov chains, IEEE transactions on automatic control 54, No. 7, 1668-1674 (2009)
[48]Ding, F.; Liu, G.; Liu, X. P.: Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE transaction on automatic control 55, No. 8, 1976-1981 (2010)
[49]Ding, F.; Ding, J.: Least squares parameter estimation with irregularly missing data, International journal of adaptive control and signal processing 24, No. 7, 540-553 (2010) · Zbl 1200.93130 · doi:10.1002/acs.1141
[50]Ding, F.; Liu, G.; Liu, X. P.: Parameter estimation with scarce measurements, Automatica 47, No. 8, 1646-1655 (2011) · Zbl 1232.62043 · doi:10.1016/j.automatica.2011.05.007
[51]Shi, Y.; Fang, H.: Kalman filter based identification for systems with randomly missing measurements in a network environment, International journal of control 83, No. 3, 538-551 (2010) · Zbl 1222.93228 · doi:10.1080/00207170903273987