zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Henry-Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay. (English) Zbl 1247.26043
Summary: This paper presents retarded integral inequalities of Henry-Gronwall type. Applying these inequalities, we study certain properties of solutions of fractional differential equations with delay.
MSC:
26D15Inequalities for sums, series and integrals of real functions
References:
[1]Agarwal, R. P.; Deng, S.; Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications, Appl. math. Comput. 165, 599-612 (2005) · Zbl 1078.26010 · doi:10.1016/j.amc.2004.04.067
[2]Denton, Z.; Vatsala, A. S.: Fractional integral inequalities and applications, Comput. math. Appl. 59, 1087-1094 (2010) · Zbl 1189.26044 · doi:10.1016/j.camwa.2009.05.012
[3]Ei-Owaidy, H.; Ragab, A.; Abdeldaim, A.: On some new integral inequalities of Gronwall – Bellman type, Appl. math. Comput. 106, 289-303 (1999) · Zbl 1037.26011 · doi:10.1016/S0096-3003(98)10131-5
[4]Henry, D.: Geometric theory of semilinear parabolic equations, (1981)
[5]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, Theory and applications of fractional differential equations 204 (2006)
[6]Kuczma, M.: An introduction to the theory of functional equations and inequalities: Cauchy’s equation and Jensen’s inequality, (2009)
[7]Lipovan, O.: A retarded Gronwall-like inequality and its applications, J. math. Anal. appl. 252, 389-401 (2000) · Zbl 0974.26007 · doi:10.1006/jmaa.2000.7085
[8]Ma, Q.; Pec&breve, J.; Arić: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations, J. math. Anal. appl. 341, 894-905 (2008)
[9]Medved&breve, M.; : A new approach to an analysis of henry type integral inequalities and their bihari type versions, J. math. Anal. appl. 214, 349-366 (1997)
[10]Medved&breve, M.; : Integral inequalities and global solutions of semilinear evolution equations, J. math. Anal. appl. 267, 643-650 (2002)
[11]Pachpatte, B. G.: On some generalizations of Bellman’s lemma, J. math. Anal. appl. 5, 141-150 (1975) · Zbl 0305.26010 · doi:10.1016/0022-247X(75)90146-8
[12]Pachpatte, B. G.: Inequalities for differential and integral equations, (1998)
[13]Pachpatte, B. G.: Explicit bounds on certain integral inequalities, J. math. Anal. appl. 267, 48-61 (2002) · Zbl 0996.26008 · doi:10.1006/jmaa.2001.7743
[14]Pachpatte, B. G.: Integral and finite difference inequalities and applications, (2006)
[15]Podlubny, I.: Fractional differential equations, (1999)
[16]Ye, H.; Ding, Y.; Gao, J.: The existence of a positive solution of Dα[x(t)-x(0)]=x(t)f(t,xt), Positivity 11, 341-350 (2007) · Zbl 1121.34064 · doi:10.1007/s11117-006-2038-6
[17]Ye, H.; Gao, J.; Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation, J. math. Anal. appl. 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061