zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and multiplicity of positive solutions for singular fractional boundary value problems. (English) Zbl 1247.34006

Summary: We discuss the existence and multiplicity of positive solutions for the singular fractional boundary value problem

D 0+ α u(t)+f((t,u(t),D 0+ ν u(t),D 0+ μ u(t))=0,
u(0)=u ' (0)=u '' (0)=u '' (1)=0,

where 3<α4, 0<ν1, 1<μ2, D 0+ α is the standard Riemann-Liouville fractional derivative, f is a Carathédory function and f(t,x,y,z) is singular at the value 0 of its arguments x,y,z. By means of a fixed point theorem, the existence and multiplicity of positive solutions are obtained.

34A08Fractional differential equations
34B18Positive solutions of nonlinear boundary value problems for ODE
34B16Singular nonlinear boundary value problems for ODE
45J05Integro-ordinary differential equations
[1]Agarwal, R. P.; O’regan, D.; Wong, P. J. Y.: Positive solutions of differential, difference and integral equations, (1999)
[2]Agarwal, R. P.; Zhou, Y.; He, Y.: Existence of fractional neutral functional differential equations, Comput. math. Appl. 59, No. 3, 1095-1100 (2010) · Zbl 1189.34152 · doi:10.1016/j.camwa.2009.05.010
[3]Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[4]Benchohra, M.; Hamani, S.; Ntouyas, S. K.: Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear anal. 71, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[5]Chang, Y.; Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. Modelling 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[6]Chen, F.; Zhou, Y.: Attractivity of fractional functional differential equations, Comput. math. Appl. 62, No. 3, 1359-1369 (2011) · Zbl 1228.34017 · doi:10.1016/j.camwa.2011.03.062
[7]Chen, F.; Nieto, J. J.; Zhou, Y.: Global attractivity for nonlinear fractional differential equations, Nonlinear anal. 13, 287-298 (2012)
[8]Daftardar-Gejji, V.; Bhalekar, S.: Boundary value problems for multi-term fractional differential equations, J. math. Anal. appl. 345, 754-765 (2008) · Zbl 1151.26004 · doi:10.1016/j.jmaa.2008.04.065
[9]Diethelm, K.: The analysis of fractional differential equations, Lectures notes in mathematics (2010)
[10]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[11]Krasnosel’skii, M. A.: Positive solutions of operator equations, (1964) · Zbl 0121.10604
[12]Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations, Nonlinear anal. 69, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[13]Liu, X.; Jia, M.: Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. math. Appl. 59, 2880-2886 (2010) · Zbl 1193.34037 · doi:10.1016/j.camwa.2010.02.005
[14]Podlubny, I.: Fractional differential equations, Math. sci. Eng. 198 (1999) · Zbl 0924.34008
[15]Wang, J.; Zhou, Y.; Wei, W.: A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces, Commun. nonlinear sci. Numer. simul. 16, 4049-4059 (2011) · Zbl 1223.45007 · doi:10.1016/j.cnsns.2011.02.003
[16]Wang, J.; Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear anal. TMA 74, 5929-5942 (2011) · Zbl 1223.93059 · doi:10.1016/j.na.2011.05.059
[17]Wang, J.; Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions, Nonlinear anal. RWA 12, 3642-3653 (2011) · Zbl 1231.34108 · doi:10.1016/j.nonrwa.2011.06.021
[18]Wang, J.; Wei, W.; Zhou, Y.: Fractional finite time delay evolution systems and optimal controls in infinite dimensional spaces, J. dyn. Control syst. 17, 515-535 (2011)
[19]Wang, J.; Zhou, Y.; Wei, W.; Xu, H.: Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls, Comput. math. Appl. 62, 1427-1441 (2011) · Zbl 1228.45015 · doi:10.1016/j.camwa.2011.02.040
[20]Wang, J.; Zhou, Y.: Study of an approximation process of time optimal control for fractional evolution systems in Banach spaces, Adv. difference equ. 2011, 1-16 (2011) · Zbl 1222.49006 · doi:10.1155/2011/385324
[21]Wei, Z.; Dong, W.; Che, J.: Periodic boundary value problems for fractional differential equations involving a Riemann–Liouville fractional derivative, Nonlinear anal. TMA 73, 3232-3238 (2010) · Zbl 1202.26017 · doi:10.1016/j.na.2010.07.003
[22]Zhou, Y.; Jiao, F.; Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear anal. TMA 71, 3249-3256 (2009) · Zbl 1177.34084 · doi:10.1016/j.na.2009.01.202
[23]Bai, Z.; Lü, H.: Positive solutions of boundary value problems of nonlinear fractional differential equation, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[24]Bai, Z.; Qiu, T.: Existence of positive solution for singular fractional differential equation, Appl. math. Comput. 215, 2761-2767 (2009) · Zbl 1185.34004 · doi:10.1016/j.amc.2009.09.017
[25]Staněk, S.: The existence of positive solutions of singular fractional boundary value problems, Comput. math. Appl. 62, No. 3, 1379-1388 (2011) · Zbl 1228.34020 · doi:10.1016/j.camwa.2011.04.048
[26]Xu, X.; Jiang, D.; Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear anal. 71, 4676-4688 (2009) · Zbl 1178.34006 · doi:10.1016/j.na.2009.03.030
[27]Zhang, S.: Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. math. Appl. 59, 1300-1309 (2010) · Zbl 1189.34050 · doi:10.1016/j.camwa.2009.06.034
[28]Y. Zhao, S. Sun, Z. Han, M. Zhang, Existence on positive solutions for boundary value problems of singular nonlinear fractional differential equations, in: 2010 Sixth IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Qingdao, 2010, pp. 480–485.
[29]Agarwal, R. P.; O’regan, D.; Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. math. Anal. appl. 371, 57-68 (2010) · Zbl 1206.34009 · doi:10.1016/j.jmaa.2010.04.034