zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized mixed type of quartic-cubic-quadratic-additive functional equations. (English) Zbl 1247.39023

Let k{0,±1} be a fixed integer. The authors give the general solution of the functional equation


In fact, the main result of the paper is a straightforward consequence of a particular case of L. Székelyhidi’s result [Convolution type functional equations on topological abelian groups, Singapore etc.: World Scientific (1991; Zbl 0748.39003)].

39B22Functional equations for real functions
39B52Functional equations for functions with more general domains and/or ranges
[1]J. M. Almíra and A. J. López-Moreno, ”On solutions of the Fréchet functional equation,” J. Math. Anal. Appl., 332, 1119–1133 (2007). · Zbl 1118.39008 · doi:10.1016/j.jmaa.2006.11.002
[2]J. K. Chung and P. K. Sahoo, ”On the general solution of a quartic functional equation,” Bull. Korean Math. Soc., 40, 565–576 (2003). · Zbl 1048.39017 · doi:10.4134/BKMS.2003.40.4.565
[3]D. Ž. Djoković, ”A representation theorem for (X 1-1)(X 2-1)...(X n -1) and its applications,” Ann. Pol. Math., 22, 189–198 (1969).
[4]F. Ergün, S. R. Kumar, and R. Rubinfeld, ”Approximate checking of polynomials and functional equations,” in: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (1996), pp. 592–601.
[5]M. Eshaghi Gordji and H. Khodaei, ”Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces,” Nonlin. Anal., 71, 5629–5643 (2009). · Zbl 1179.39034 · doi:10.1016/j.na.2009.04.052
[6]M. Eshaghi Gordji, S. Kaboli-Gharetapeh, and S. Zolfaghari, ”Stability of a mixed type quadratic, cubic and quartic functional equation,” arXiv:0812.2939v2[math.FA].
[7]M. Eshaghi Gordji, S. Kaboli-Gharetapeh, Park Choonkil, and S. Zolfaghari, ”Stability of an additive–cubic–quartic functional equation,” Adv. Difference Equat., 1–20 (2009).
[8]M. Eshaghi Gordji, H. Khodaei, and T. M. Rassias, ”On the Hyers–Ulam–Rassias stability of a generalized mixed type of quartic, cubic, quadratic and additive functional equations in quasi-Banach spaces,” arXiv:0903.0834v2[math.FA].
[9]M. Hosszú, ”On the Fr’echet’s functional equation,” Bul. Inst. Politech. Lasi, 10, 27–28 (1964).
[10]M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe– Uniwersytet Ślaski, Warsaw–Cracow–Katowice (1985).
[11]J. M. Rassias, ”Solution of the Ulam stability problem for cubic mapping,” Glasnik Mat., 36, 63–72 (2001).
[12]J. M. Rassias, ” Solution of the Ulam stability problem for quartic mappings,” Glasnik Mat., 34(54), 243–252 (1999).
[13]R. Rubinfeld, ”On the robustness of functional equations,” SIAM J. Comput., 28, 1972–1997 (1999). · Zbl 0943.39012 · doi:10.1137/S0097539796298625
[14]P. K. Sahoo, ”A generalized cubic functional equation,” Acta Math. Sinica, Engl. Ser., 215, 1159–1166 (2005). · Zbl 1086.39026 · doi:10.1007/s10114-005-0551-3
[15]P. K. Sahoo, ”On a functional equation characterizing polynomials of degree three,” Bull. Inst. Math., Acad. Sinica, 32, 35–44 (2004).
[16]L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific, Singapore (1991).
[17]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”Stability of a general mixed additive–cubic functional equation in non-Archimedean fuzzy normed spaces,” J. Math. Phys., 51, 19 (2010).
[18]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”Intuitionistic fuzzy stability of a general mixed additive–cubic equation,” J. Math. Phys., 51, No. 6, 21 (2010).
[19]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”On the stability of a general mixed additive–cubic functional equation in random normed spaces,” J. Inequal. Appl., 2010, 16 (2010).
[20]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”A fixed point approach to the stability of a general mixed AQCQ-functional equation in non-Archimedean normed spaces,” Discrete Dynam. Nature Soc., 2010, 24 (2010).
[21]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”A fixed point approach to the stability of a general mixed additive–cubic functional equation in quasi fuzzy normed spaces,” Int. J. Phys. Sci., 6, No. 2, 12 (2011).
[22]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”A generalized mixed additive–cubic functional equation,” J. Comput. Anal. Appl., 13, No. 7, 1273–1282 (2011).
[23]T. Z. Xu, J. M. Rassias, and W. X. Xu, ”A generalized mixed quadratic–quartic functional equation,” Bull. Malaysian Math. Sci. Soc. (to appear).