zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complete convergence of weighted sums under negative dependence. (English) Zbl 1247.60044
Summary: We study the complete convergence of weighted sums. In fact, we extend the result of M. Amini-Dehak and A. Bozorgnia [J. Appl. Math. Stoch. Anal. 16, No. 2, 121–126 (2003; Zbl 1040.60021)] on unweighted average to a weighted average under mild conditions.
60F15Strong limit theorems
[1]Adler M, Chakrabarti S, Mitzenmacher M, Rasmussen L (1995) Parallel randomised load balancing (Preliminary Version), STOC
[2]Amini M, Bozorgnia A (2003) Complete convergence for negatively dependent random variables. J Appl Math Stoch Anal 16(2): 121–126 · Zbl 1040.60021 · doi:10.1155/S104895330300008X
[3]Bozorgnia A, Patterson RF, Taylor RL (1996) Limit theorems for dependent random variables. In: Lakshmikantham V (eds) World Congress Nonl Anal ’92. Walter de Gruyter, Berlin, pp 1639–1650
[4]Chow YS (1966) Some convergence theorems for independent r.v.’s. Ann Math Stat 37: 1482–1493 · Zbl 0152.16905 · doi:10.1214/aoms/1177699140
[5]Dietzfelbinger M, Meyer auf der Heide F (1993) Simple efficient shared memory simulations (Extended Abstract), SPAA
[6]Gut A (1992) Complete convergence for arrays. Periodica Math Hungarica 25: 51–75 · Zbl 0760.60029 · doi:10.1007/BF02454383
[7]Hsu PL, Robbins H (1947) Complete convergence and the law of large numbers. Proc Natl Acad Sci 33: 25–31 · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[8]Hu TC, Volodin A (2000) A note on complete convergence for arrays. Statist Probab Lett 47: 209–211 · doi:10.1016/S0167-7152(99)00209-6
[9]Hu TC, Moricz F, Taylor RL (1989) Strong laws of large numbers for arrays of rowwise independent random variables. Acta Sci Hungar 58: 153–162 · Zbl 0685.60032 · doi:10.1007/BF01950716
[10]Hu TC, Cabarera MO, Sung SH, Volodin A (2003) Complete convergence for arrays of rowwise independent random variables. Commun Korean Math Soc 18(2): 375–383 · Zbl 1101.60324 · doi:10.4134/CKMS.2003.18.2.375
[11]Panconesi A, Srinivasan A (1992) Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J Comput [Extended abstract appeared as A. Panconesi and A. Srinivasan Fast randomized algorithms for distributed edge coloring. In: Proceedings of 11th Annual ACM Symposium on Principles of Distributed Computing, pp 251–262]
[12]Rohatgi VK (1971) Convergence of weighted sums of random variables. Proc Cambridge Philos Soc 69: 305–307 · doi:10.1017/S0305004100046685
[13]Stout WF (1974) Almost sure convergence. Academic Press, New York
[14]Wu WB (1999) On the strong convergence of a weighted sum. Stat Probab Lett 44: 19–22 · Zbl 0951.60027 · doi:10.1016/S0167-7152(98)00287-9