zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new stochastic mixed ridge estimator in linear regression model. (English) Zbl 1247.62179
Summary: We are concerned with parameter estimation in linear regression models with additional stochastic linear restrictions. To overcome the multicollinearity problem, a new stochastic mixed ridge estimator is proposed and its efficiency is discussed. Necessary and sufficient conditions for the superiority of the stochastic mixed ridge estimator over the ridge estimator and the mixed estimator in the mean squared error matrix sense are derived for the two cases in which the parametric restrictions are correct or are not correct. Finally, a numerical example is also given to show the theoretical results.

MSC:
62J07Ridge regression; shrinkage estimators
62J05Linear regression
62F30Statistical inference under constraints
62H12Multivariate estimation
References:
[1]Akdeniz F, Erol H (2003) Mean squared error matrix comparisons of some biased estimators in linear regression. Comm Stat Theory Methods 32(12): 2389–2413 · Zbl 1028.62054 · doi:10.1081/STA-120025385
[2]Baksalary JK, Trenkler G (1991) Nonnegative and positive definiteness of matrices modified by two matrices of rank one. Linear Algebra Appl 151: 169–184 · Zbl 0728.15011 · doi:10.1016/0024-3795(91)90362-Z
[3]Durbin J (1953) A note on regression when there is extraneous information about one of the coefficients. J Am Stat Assoc 48: 799–808 · doi:10.1080/01621459.1953.10501201
[4]Farebrother RW (1976) Further results on the mean square error of ridge regression. J Roy Stat Soc Ser 38(B): 248–250
[5]Gruber MHJ (1998) Improving efficiency by Shrinkage: the James-Stein and ridge regression estimators. Marcel Dekker, Inc., New York
[6]Groß J (2003) Restricted ridge estimation. Stat Prob Lett 65: 57–64 · Zbl 1116.62368 · doi:10.1016/j.spl.2003.07.005
[7]Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12: 55–67 · doi:10.1080/00401706.1970.10488634
[8]Kaciranlar S, Sakallioglus S, Akdeniz F (1998) Mean squared error comparisons of the modified ridge regression estimator and the restricted ridge regression estimator. Comm Stat Theory Methods 27(1): 131–138 · doi:10.1080/03610929808832655
[9]Kaciranlar S, Sakallioglu S, Akdeniz F, Styan GPH, Werner HJ (1999) A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement. Sankhya Indian J Stat 61(B): 443–459
[10]Liu K. (1993) A new class of biased estimate in linear regression. Comm Stat Theory Methods 22: 393–402 · doi:10.1080/03610929308831027
[11]Hubert MH, Wijekoon P (2006) Improvement of the Liu estimator in the linear regression model. Stat Pap 47: 471–479 · Zbl 1125.62055 · doi:10.1007/s00362-006-0300-4
[12]Rao CR, Toutenburg H (1995) Linear models: least squares and alternatives. Springer, New York
[13]Sarkar N (1992) A new estimator combining the ridge regression and the restricted least squares methods of estimation. Comm Stat Theory Methods 21: 1987–2000 · doi:10.1080/03610929208830893
[14]Swindel BF (1976) Good estimators based on prior information. Comm Stat Theory Methods 5: 1065–1075 · Zbl 0342.62035 · doi:10.1080/03610927608827423
[15]Stein C (1956) Inadmissibility of the usual estimator for mean of multivariate normal distribution. In: Neyman J (ed) Proceedings of the third berkley symposium on mathematical and statistics probability vol 1, pp 197–206
[16]Theil H, Goldberger AS (1961) On pure and mixed statistical estimation in economics. Intern Econ Rev 2: 65–78 · doi:10.2307/2525589
[17]Theil H (1963) On the use of incomplete prior information in regression analysis. J Am Sta Assoc 58: 401–414 · doi:10.1080/01621459.1963.10500854