zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Frictional contact analysis of spatial prismatic joints in multibody systems. (English) Zbl 1247.70025
An approach for the frictional contact analysis of rigid multibody systems with spatial prismatic joints is presented. Such a joint consists of a slider and a guide (both are being rigid), and slider can be enclosed into the guide entirely or partially. The length of overlap has constant value in the first case and varies in the second one. It is assumed that the cross-section of contact surface is rectangular. On this way it is shown that surface-to-surface (line-to-line) contacts in joint are equivalent to point-to-point contacts, and then a set of equations is given which enables to determine the location and force of contacts if the joint reaction forces are given. A group of gap functions associated with the corner points of the overlap of the slider is introduced, and relations between them are highly emphasized. As the non-colliding contacts being predominant when clearances of joints are small, the contact forces are formulated in terms of resultant frictional forces in the joint. Three numerical examples are given to illustrate the method proposed.
MSC:
70E55Dynamics of multibody systems
70F40Problems with friction (particle dynamics)
References:
[1]Lopes, D.S., Silva, M.T., Ambrósio, J.A., Flores, P.: A mathematical framework for contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24(3), 255–280 (2010) · doi:10.1007/s11044-010-9220-0
[2]Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010) · doi:10.1007/s11044-010-9209-8
[3]García Orden, J.C.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13, 401–420 (2005) · doi:10.1007/s11044-005-3989-2
[4]Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002) · Zbl 1062.70553 · doi:10.1016/S0094-114X(02)00045-9
[5]Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)
[6]Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7(4), 471–497 (1995) · doi:10.1007/BF00121109
[7]Glocker, C.: Concepts for modeling impacts without friction. Acta Mech. 168(1–2), 1–19 (2004) · Zbl 1063.74075 · doi:10.1007/s00707-004-0076-3
[8]Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009) · Zbl 1189.70006 · doi:10.1007/s11044-009-9147-5
[9]Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)
[10]Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22, 213–224 (1987) · doi:10.1016/0094-114X(87)90004-8
[11]Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011) · Zbl 1263.70007 · doi:10.1007/s11044-010-9237-4
[12]Dopico, D., Luaces, A., Gonzalez, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst. Dyn. 25(2), 167–183 (2011) · doi:10.1007/s11044-010-9230-y
[13]Haines, R.S.: Survey: 2-dimensional motion and impact at revolute joints. Mech. Mach. Theory 15, 361–370 (1980) · doi:10.1016/0094-114X(80)90013-0
[14]Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998) · Zbl 0953.70517 · doi:10.1023/A:1009759826529
[15]Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004) · doi:10.1016/j.compstruc.2004.03.031
[16]Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamic behaviour of planar rigid multibody systems including revolute joints with clearance. J. Multi-Body Dyn. 221(2), 161–174 (2007). Proceedings of the Institution of Mechanical Engineers, Part–K
[17]Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009) · Zbl 1178.70022 · doi:10.1016/j.mechmachtheory.2008.08.003
[18]Bing, S., Ye, J.: Dynamic analysis of the reheat–stop–valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory 43(12), 1625–1638 (2008) · Zbl 1193.70007 · doi:10.1016/j.mechmachtheory.2007.12.004
[19]Erkaya, S., Uzmay, I.: A neural-genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20(1), 69–83 (2008) · doi:10.1007/s11044-008-9106-6
[20]Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and dynamics of multibody systems with imperfect joints: models and case studies. In: Lecture Notes in Applied and Computational Mechanic, vol. 34. Springer, Berlin (2008)
[21]Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1, 240–247 (2006) · doi:10.1115/1.2198877
[22]Liu, C.S., Zhang, K., Yang, L.: Normal force–displacement relationship of spherical joints with clearances. J. Comput. Nonlinear Dyn. 1(2), 160–167 (2006) · doi:10.1115/1.2162872
[23]Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact–impact force model on the dynamic response of multibody systems. J. Multi-Body Dyn. 220(1), 21–34 (2006). Proceedings of the Institution of Mechanical Engineers, Part–K
[24]Srivastava, N., Haque, I.: Clearance and friction-induced dynamics of chain CVT drives. Multibody Syst. Dyn. 19(3), 255–280 (2008) · doi:10.1007/s11044-007-9057-3
[25]Wilson, R., Fawcett, J.N.: Dynamics of the slider–crank mechanism with clearance in the sliding bearing. Mech. Mach. Theory 9, 61–80 (1974) · doi:10.1016/0094-114X(74)90008-1
[26]Farahanchi, F., Shaw, S.: Chaotic and periodic dynamics of a slider–crank mechanism with slider clearance. J. Sound Vib. 177(3), 307–324 (1994) · Zbl 0945.70539 · doi:10.1006/jsvi.1994.1436
[27]Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 011007-10 (2008)
[28]Flores, P., Leine, R.I., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010) · doi:10.1007/s11044-009-9178-y
[29]Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Comput. Graph. 23, 223–232 (1989) · doi:10.1145/74334.74356
[30]Glocker, C.: Formulation of spatial contact situations in rigid multibody systems. Comput. Methods Appl. Mech. Eng. 177, 199–214 (1999) · Zbl 0952.70007 · doi:10.1016/S0045-7825(98)00381-8
[31]Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006) · Zbl 1207.70006 · doi:10.1007/s11044-006-9026-2
[32]Qi, Z., Xu, Y., Luo, X., Yao, S.: Recursive formulation of multibody systems with frictional joints. Multibody Syst. Dyn. 24(2), 133–166 (2010) · doi:10.1007/s11044-010-9213-z
[33]Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992) · Zbl 0814.65063 · doi:10.1080/02331939208843795
[34]Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A, Solids 22(2), 193–216 (2003) · Zbl 1038.74513 · doi:10.1016/S0997-7538(03)00025-1
[35]Kosenko, I.I., Aleksandrov, E.V.: Implementation of the Contensou–Erismann tangent forces model in the Hertz contact problem. Multibody Syst. Dyn. 24, 281–301 (2010) · doi:10.1007/s11044-010-9211-1
[36]Rooney, G.T., Deravi, P.: Coulomb friction in mechanism sliding joints. Mech. Mach. Theory 17(3), 207–211 (1982) · doi:10.1016/0094-114X(82)90006-4
[37]The C++ version of Adams/Solver: MSC Software Corporation (2005)
[38]Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010) · Zbl 1204.70008 · doi:10.1007/s11071-010-9676-8