zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy perturbation Sumudu transform method for nonlinear equations. (English) Zbl 1247.76062
Summary: We propose a combined form of the sumudu transform method with the homotopy perturbation method to solve nonlinear equations. This method is called the homotopy perturbation sumudu transform method (HPSTM). The nonlinear terms can be easily handled by the use of He’s polynomials. The proposed scheme finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. The fact that the proposed technique solves nonlinear problems without using Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method. The results reveal that the proposed method is very efficient, simple and can be applied to other nonlinear problems.
76M25Other numerical methods (fluid mechanics)