zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Observable state space realizations for multivariable systems. (English) Zbl 1247.93003
Summary: We derive two canonical state space forms (i.e., the observer canonical form and the observability canonical form) from multiple-input multiple-output systems described by difference equations. The state space model is expressed by the first-order difference equation and is equivalent to the input-output representation. More specifically, by setting the different state variables, the difference equations or the input-output representations can be transformed into two observable canonical forms and the canonical state space model can be also transformed into the difference equations. Finally, two examples are given.
MSC:
93B15Realizability of systems from input-output data
References:
[1]Tsai, J. S. H.; Wang, C. T.; Kuang, C. C.; Guo, S. M.; Shieh, L. S.; Chen, C. W.: A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems, Applied mathematical modelling 34, No. 10, 3030-3054 (2010) · Zbl 1201.93079 · doi:10.1016/j.apm.2010.01.011
[2]Yan, B.; Yan, G. W.: A steady-state lattice Boltzmann model for incompressible flows, Computers and mathematics with applications 61, No. 5, 1348-1354 (2011) · Zbl 1217.76063 · doi:10.1016/j.camwa.2010.12.078
[3]Ding, F.; Chen, T.: Least squares based self-tuning control of dual-rate systems, International journal of adaptive control and signal processing 18, No. 8, 697-714 (2004) · Zbl 1055.93044 · doi:10.1002/acs.828
[4]Ding, F.; Chen, T.; Iwai, Z.: Adaptive digital control of Hammerstein nonlinear systems with limited output sampling, SIAM journal on control and optimization 45, No. 6, 2257-2276 (2007) · Zbl 1126.93034 · doi:10.1137/05062620X
[5]Ding, F.; Chen, T.: A gradient based adaptive control algorithm for dual-rate systems, Asian journal of control 8, No. 4, 314-323 (2006)
[6]Gelişken, A.; Çinar, C.; Kurbanli, A. S.: On the asymptotic behavior and periodic nature of a difference equation with maximum, Computers and mathematics with applications 59, No. 2, 898-902 (2010)
[7]Wei, G. P.; Shen, J. H.: Boundedness and asymptotic behavior results for nonlinear difference equations with positive and negative coefficients, Computers and mathematics with applications 60, No. 8, 2469-2475 (2010) · Zbl 1221.39019 · doi:10.1016/j.camwa.2010.08.046
[8]Ashyralyev, A.; Sözen, Y.: Well-posedness of parabolic differential and difference equations, Computers and mathematics with applications 60, No. 3, 792-802 (2010) · Zbl 1201.35064 · doi:10.1016/j.camwa.2010.05.026
[9]Kaushik, A.; Sharma, K. K.; Sharma, M.: A parameter uniform difference scheme for parabolic partial differential equation with a retarded argument, Applied mathematical modelling 34, No. 12, 4232-4242 (2010) · Zbl 1201.65131 · doi:10.1016/j.apm.2010.04.020
[10]Li, B.; Song, Q. K.: Asymptotic behaviors of non-autonomous impulsive difference equation with delays, Applied mathematical modelling 35, No. 7, 3423-3433 (2011) · Zbl 1221.39023 · doi:10.1016/j.apm.2011.01.012
[11]Kumar, D.: A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations, Applied mathematical modelling 35, No. 6, 2805-2819 (2011) · Zbl 1219.65110 · doi:10.1016/j.apm.2010.11.074
[12]Kadalbajoo, M. K.; Kumar, D.: A computational method for singularly perturbed nonlinear differential-difference equations with small shift, Applied mathematical modelling 34, No. 9, 2584-2596 (2010) · Zbl 1195.65100 · doi:10.1016/j.apm.2009.11.021
[13]Kurbanli, A. S.; Ćinar, C.; Yalçinkaya, İ.: On the behavior of positive solutions of the system of rational difference equations, Mathematical and computer modelling 53, No. 5–6, 1261-1267 (2011) · Zbl 1217.39024 · doi:10.1016/j.mcm.2010.12.009
[14]Iričanin, B. D.: Global stability of some classes of higher-order nonlinear difference equations, Applied mathematics and computation 216, No. 4, 1325-1328 (2010) · Zbl 1194.39012 · doi:10.1016/j.amc.2010.02.027
[15]Schön, T. B.; Wills, A.; Ninness, B.: System identification of nonlinear state-space models, Automatica 47, No. 1, 39-49 (2011) · Zbl 1209.93155 · doi:10.1016/j.automatica.2010.10.013
[16]Rachid, M.; Maamar, B.; Said, D.: Multivariable fractional system approximation with initial conditions using integral state space representation, Computers and mathematics with applications 59, No. 5, 1842-1851 (2010) · Zbl 1189.93032 · doi:10.1016/j.camwa.2009.08.024
[17]Ding, F.; Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems–I: regular papers 52, No. 6, 1179-1187 (2005)
[18]Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[19]Xie, L.; Liu, Y. J.; Yang, H. Z.; Ding, F.: Modelling and identification for non-uniformly periodically sampled-data systems, IET control theory and applications 4, No. 5, 784-794 (2010)
[20]Xie, L.; Yang, H. Z.; Ding, F.: Recursive least squares parameter estimation for non-uniformly sampled systems based on the data filtering, Mathematical and computer modelling 54, No. 1-2, 315-324 (2011) · Zbl 1225.62120 · doi:10.1016/j.mcm.2011.02.014
[21]Shi, Y.; Fang, H.: Kalman filter based identification for systems with randomly missing measurements in a network environment, International journal of control 83, No. 3, 538-551 (2010) · Zbl 1222.93228 · doi:10.1080/00207170903273987
[22]Fang, H.; Wu, J.; Shi, Y.: Genetic adaptive state estimation with missing input/output data, Proceedings of the institution of mechanical engineers, part I: Journal of systems and control engineering 224, No. 5, 611-617 (2010)
[23]Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control 50, No. 3, 397-402 (2005)
[24]Ding, F.; Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica 41, No. 2, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[25]Ding, F.; Chen, H. B.; Li, M.: Multi-innovation least squares identification methods based on the auxiliary model for MISO systems, Applied mathematics and computation 187, No. 2, 658-668 (2007) · Zbl 1114.93101 · doi:10.1016/j.amc.2006.08.090
[26]Ding, F.; Xiao, Y. S.: A finite-data-window least squares algorithm with a forgetting factor for dynamical modeling, Applied mathematics and computation 186, No. 1, 184-192 (2007) · Zbl 1113.93108 · doi:10.1016/j.amc.2006.06.133
[27]Ding, F.; Liu, G.; Liu, X. P.: Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE transactions on automatic control 55, No. 8, 1976-1981 (2010)
[28]Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems, Computers mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
[29]Zhang, Z. N.; Ding, F.; Liu, X. G.: Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems, Computers and mathematics with applications 61, No. 3, 672-682 (2011) · Zbl 1217.15022 · doi:10.1016/j.camwa.2010.12.014
[30]Liu, Y. J.; Xiao, Y. S.; Zhao, X. L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied mathematics and computation 215, No. 4, 1477-1483 (2009) · Zbl 1177.65095 · doi:10.1016/j.amc.2009.07.012
[31]Han, L. L.; Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing 19, No. 4, 545-554 (2009)
[32]Liu, Y. J.; Sheng, J.; Ding, R. F.: Convergence of stochastic estimation gradient algorithm for multivariable ARX-like systems, Computers and mathematics with applications 59, No. 8, 2615-2627 (2010) · Zbl 1193.60057 · doi:10.1016/j.camwa.2010.01.030
[33]Zhang, Y.; Cui, G. M.: Bias compensation methods for stochastic systems with colored noise, Applied mathematical modelling 35, No. 4, 1709-1716 (2011) · Zbl 1217.93163 · doi:10.1016/j.apm.2010.10.003
[34]Zhang, Y.: Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods, Mathematical and computer modelling 53, No. 9–10, 1810-1819 (2011) · Zbl 1219.93141 · doi:10.1016/j.mcm.2010.12.059
[35]Ding, J.; Liu, Y. J.; Ding, F.: Iterative solutions to matrix equations of form aixbi = fi, Computers and mathematics with applications 59, No. 11, 3500-3507 (2010) · Zbl 1197.15009 · doi:10.1016/j.camwa.2010.03.041
[36]Dehghan, M.; Hajarian, M.: Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations, Applied mathematical modelling 35, No. 7, 3285-3300 (2011) · Zbl 1227.65037 · doi:10.1016/j.apm.2011.01.022
[37]Dehghan, M.; Hajarian, M.: Computing matrix functions using mixed interpolation methods, Mathematical and computer modelling 52, No. 5–6, 826-836 (2010) · Zbl 1202.65059 · doi:10.1016/j.mcm.2010.05.013
[38]Ding, F.; Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control 50, No. 9, 1436-1441 (2005)
[39]Ding, F.; Shi, Y.; Chen, T.: Performance analysis of estimation algorithms of non-stationary ARMA processes, IEEE transactions on signal processing 54, No. 3, 1041-1053 (2006)
[40]Ding, F.; Chen, T.: Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data, IEEE transactions on circuits and systems–I: regular papers 52, No. 3, 555-566 (2005)
[41]Ding, F.; Chen, T.: Identification of Hammerstein nonlinear ARMAX systems, Automatica 41, No. 9, 1479-1489 (2005) · Zbl 1086.93063 · doi:10.1016/j.automatica.2005.03.026
[42]Ding, F.; Shi, Y.; Chen, T.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models, Nonlinear dynamics 45, No. 1–2, 31-43 (2006) · Zbl 1134.93321 · doi:10.1007/s11071-005-1850-z
[43]Ding, F.; Shi, Y.; Chen, T.: Auxiliary model based least-squares identification methods for Hammerstein output-error systems, Systems control letters 56, No. 5, 373-380 (2007) · Zbl 1130.93055 · doi:10.1016/j.sysconle.2006.10.026
[44]Ding, J.; Ding, F.; Liu, X. P.; Liu, G.: Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data, IEEE transactions on automatic control 56, No. 11, 2677-2683 (2011)
[45]Ding, F.; Liu, P. X.; Yang, H. Z.: Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems, man, and cybernetics, part A: systems and humans 38, No. 4, 966-975 (2008)
[46]Ding, J.; Ding, F.: Bias compensation based parameter estimation for output error moving average systems, International journal of adaptive control and signal processing 25, No. 12, 1100-1111 (2011)
[47]Ding, F.; Liu, Y. J.; Bao, B.: Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems, Proceedings of the institution of mechanical engineers, part I: Journal of systems and control engineering 226, No. 1, 43-55 (2012)
[48]Ding, F.; Chen, T.; Qiu, L.: Bias compensation based recursive least squares identification algorithm for MISO systems, IEEE transactions on circuits and systems-II: express briefs 53, No. 5, 349-353 (2006)
[49]Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[50]Ding, F.; Liu, P. X.; Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing 89, No. 10, 1883-1890 (2009) · Zbl 1178.94137 · doi:10.1016/j.sigpro.2009.03.020
[51]Zhang, J. B.; Ding, F.; Shi, Y.: Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems control letters 58, No. 1, 69-75 (2009) · Zbl 1154.93040 · doi:10.1016/j.sysconle.2008.08.005
[52]Ding, F.: Several multi-innovation identification methods, Digital signal processing 20, No. 4, 1027-1039 (2010)
[53]Wang, D. Q.; Ding, F.: Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems, Digital signal processing 20, No. 3, 750-762 (2010)
[54]Ding, F.; Liu, G.; Liu, X. P.: Parameter estimation with scarce measurements, Automatica 47, No. 8, 1646-1655 (2011) · Zbl 1232.62043 · doi:10.1016/j.automatica.2011.05.007
[55]Ding, F.; Liu, P. X.; Liu, G.: Multi-innovation least squares identification for linear and pseudo-linear regression models, IEEE transactions on systems, man, and cybernetics, part B: cybernetics 40, No. 3, 767-778 (2010)
[56]Liu, Y. J.; Yu, L.; Ding, F.: Multi-innovation extended stochastic gradient algorithm and its performance analysis, Circuits, systems and signal processing 29, No. 4, 649-667 (2010) · Zbl 1196.94026 · doi:10.1007/s00034-010-9174-8
[57]Li, J. H.; Ding, F.: Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique, Computers mathematics with applications 62, No. 11, 4170-4177 (2011)
[58]Wang, W.; Li, J. H.; Ding, R. F.: Maximum likelihood parameter estimation algorithm for controlled autoregressive autoregressive models, International journal of computer mathematics 88, No. 16, 3458-3467 (2011)
[59]Li, J. H.; Ding, F.; Yang, G. W.: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems, Mathematical and computer modelling 55, No. 3–4, 442-450 (2012)
[60]Liu, Y. J.; Wang, D. Q.; Ding, F.: Least-squares based iterative algorithms for identifying box–Jenkins models with finite measurement data, Digital signal processing 20, No. 5, 1458-1467 (2010)
[61]Wang, D. Q.; Yang, G. W.; Ding, R. F.: Gradient-based iterative parameter estimation for box–Jenkins systems, Computers mathematics with applications 60, No. 5, 1200-1208 (2010) · Zbl 1201.94046 · doi:10.1016/j.camwa.2010.06.001
[62]Han, H. Q.; Xie, L.; Ding, F.; Liu, X. G.: Hierarchical least squares based iterative identification for multivariable systems with moving average noises, Mathematical and computer modelling 51, No. 9–10, 1213-1220 (2010) · Zbl 1198.93216 · doi:10.1016/j.mcm.2010.01.003
[63]Ding, F.; Liu, P. X.; Liu, G.: Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digital signal processing 20, No. 3, 664-677 (2010)
[64]Ding, F.; Liu, P. X.; Liu, G.: Identification methods for Hammerstein nonlinear systems, Digital signal processing 21, No. 2, 215-238 (2011)
[65]Wang, D. Q.; Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal processing 91, No. 5, 1182-1189 (2011) · Zbl 1219.94052 · doi:10.1016/j.sigpro.2010.11.004
[66]Dehghan, M.; Hajarian, M.: Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1+A2X2B2=C, Mathematical and computer modelling 49, No. 9–10, 1937-1959 (2009) · Zbl 1171.15310 · doi:10.1016/j.mcm.2008.12.014
[67]Wang, Dq.: Least squares-based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering, IET control theory and applications 5, No. 14, 1648-1657 (2011)
[68]Liu, Y. J.; Xie, L.; Ding, F.: An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the institution of mechanical engineers, part I: Journal of systems and control engineering 223, No. 4, 445-454 (2009)
[69]Ding, F.; Chen, T.: Identification of dual-rate systems based on finite impulse response models, International journal of adaptive control and signal processing 18, No. 7, 589-598 (2004) · Zbl 1055.93018 · doi:10.1002/acs.820
[70]Ding, F.; Ding, J.: Least squares parameter estimation with irregularly missing data, International journal of adaptive control and signal processing 24, No. 7, 540-553 (2010) · Zbl 1200.93130 · doi:10.1002/acs.1141
[71]Shi, Y.; Yu, B.: Robust mixed H2/H control of networked control systems with random time delays in both forward and backward communication links, Automatica 47, No. 4, 754-760 (2011) · Zbl 1215.93045 · doi:10.1016/j.automatica.2011.01.022
[72]Shi, Y.; Ding, F.; Chen, T.: 2-norm based recursive design of transmultiplexers with designable filter length, Circuits, systems and signal processing 25, No. 4, 447-462 (2006) · Zbl 1130.94312 · doi:10.1007/s00034-004-1029-8
[73]Wang, D. Q.; Ding, F.: Input–output data filtering based recursive least squares parameter estimation for CARARMA systems, Digital signal processing 20, No. 4, 991-999 (2010)
[74]Ding, F.: Transformations between some special matrices, Computers mathematics with applications 59, No. 8, 2676-2695 (2010) · Zbl 1193.15028 · doi:10.1016/j.camwa.2010.01.036
[75]Ding, F.; Liu, P. X.; Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Applied mathematics and computation 197, No. 1, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040