zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic solutions for a semi-ratio-dependent predator-prey system with delays on time scales. (English) Zbl 1248.34140
Summary: This paper is devoted to the existence of periodic solutions for a semi-ratio-dependent predator-prey system with time delays on time scales. With the help of a continuation theorem based on coincidence degree theory, we establish necessary and sufficient conditions for the existence of periodic solutions. Our results show that for the most monotonic prey growth such as the logistic, the Gilpin, and the Smith growth, and the most celebrated functional responses such as the Holling type, the sigmoidal type, the Ivlev type, the Monod-Haldane type, and the Beddington-DeAngelis type, the system always has at least one periodic solution. Some known results are shown to be special cases of the present paper.
34N05Dynamic equations on time scales or measure chains
92D25Population dynamics (general)
34C25Periodic solutions of ODE