zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system. (English) Zbl 1248.35180
Summary: Lie symmetry analysis is performed on a new coupled KdV system, which arises in the analysis of various problems in theoretical physics and many scientific applications. The similarity reductions and new exact solutions are obtained. The solutions obtained include the solitary waves, cnoidal and snoidal waves. In addition, we derive the conservation laws of the coupled KdV system.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35C08Soliton solutions of PDE
35L65Conservation laws
35B06Symmetries, invariants, etc. (PDE)
References:
[1]Hirota, R.: Exact solution of the Korteweg – de Vries equation for multiple collisions of solitons, Phys rev lett 27, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[2]Vakhnenko, V. O.; Parkes, E. J.; Morrison, A. J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos soliton fract 17, 683-692 (2003) · Zbl 1030.37047 · doi:10.1016/S0960-0779(02)00483-6
[3]Fan, E. G.; Zhang, H. Q.: New exact solutions to a system of coupled KdV equations, Phys lett A 245, 389-392 (1998) · Zbl 0947.35126 · doi:10.1016/S0375-9601(98)00464-2
[4]Biswas, A.: 1-soliton solution of benjamin – bona – mahoney equation with dual-power law nonlinearity, Commun nonlinear sci numer simul 15, 2744-2746 (2010) · Zbl 1222.35157 · doi:10.1016/j.cnsns.2009.10.023
[5]Biswas, A.: Solitary wave solutions of the peregrine equation, Int J ocean oceanogr 4, 45-54 (2010)
[6]Yasar, E.; Özer, T.: Invariant solutions and conservation laws to nonconservative FP equation, Comput math appl 59, 3203-3210 (2010) · Zbl 1193.35105 · doi:10.1016/j.camwa.2010.03.006
[7]Zedan, H. A.: Symmetry analysis of an integrable Itô coupled system, Comput math appl 60, 3088-3097 (2010) · Zbl 1207.35263 · doi:10.1016/j.camwa.2010.10.010
[8]Hu, J. Q.: An algebraic method exactly solving two high-dimensional nonlinear evolution equations, Chaos soliton fract 23, 391-398 (2005) · Zbl 1069.35065 · doi:10.1016/j.chaos.2004.02.044
[9]Korteweg, D. J.; De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos mag 39, 422-443 (1895) · Zbl 26.0881.02
[10]Wazwaz, A. M.: A study on KdV and gardner equations with time-dependent coefficients and forcing terms, Appl math comput 217, 2277-2281 (2010) · Zbl 1202.35266 · doi:10.1016/j.amc.2010.06.038
[11]Wazwaz, A. M.: Completely integrable coupled KdV and coupled KP systems, Commun nonlinear sci numer simul 15, 2828-2835 (2010) · Zbl 1222.37069 · doi:10.1016/j.cnsns.2009.10.026
[12]Wazwaz, A. M.: Integrability of coupled KdV equations, Cent eur J phys 9, 835-840 (2011)
[13]Hereman, W.; Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math comput simul 43, 13-27 (1997) · Zbl 0866.65063 · doi:10.1016/S0378-4754(96)00053-5
[14]Tascan, F.; Bekir, A.; Koparan, M.: Traveling wave solutions of nonlinear evolution equations by using the first integral methods, Commun nonlinear sci numer simul 14, 1810-1815 (2009)
[15]Xiao-Yan, T.; Fei, H.; Sen-Yue, L.: Variable coefficient KdV equation and the analytic diagnosis of a pole blocking life cycle, Chin phys lett 23, 887-890 (2006)
[16]Zhang, S.: Application of exp-function method to high-dimensional nonlinear evolution equation, Chaos soliton fract 38, 270-276 (2008) · Zbl 1142.35593 · doi:10.1016/j.chaos.2006.11.014
[17]Wang, D. S.: Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation, Appl math comput 216, 1349-1354 (2010) · Zbl 1191.37036 · doi:10.1016/j.amc.2010.02.030
[18]Svinolupov, S. I.: Jordan algebras and generalized Korteweg – de Vries equations, Theor math fiz 87, 391-400 (1991) · Zbl 0746.35044 · doi:10.1007/BF01017947
[19]Svinolupov, S. I.: Jordan algebras and integrable systems, Funct anal appl 27, 257-265 (1994) · Zbl 0840.35099 · doi:10.1007/BF01768662
[20]Grses, M.; Karasu, A.: Degenerate svinolupov KdV systems, Phys lett A 214, 21-26 (1996) · Zbl 0972.35527 · doi:10.1016/0375-9601(96)00171-5
[21]Karasu, A.: Jordan KdV systems and painlev property, Int J theor phys 36, 705-713 (1997) · Zbl 0873.35081 · doi:10.1007/BF02435890
[22]Antonowicz, M.; Fordy, A. P.: Coupled KdV equations with multi-Hamiltonian structures, Physica D 28, 345-357 (1987) · Zbl 0638.35079 · doi:10.1016/0167-2789(87)90023-6
[23]Athorne, C.; Fordy, A. P.: Generalized KdV and mkdv equations associated with symmetric spaces, J phys A 20, 377-1386 (1987) · Zbl 0642.58034 · doi:10.1088/0305-4470/20/6/021
[24]Li, C. X.: A hierarchy of coupled kortewegde Vries equations and the corresponding finite-dimensional integrable system, J phys soc jpn 73, 327-331 (2004) · Zbl 1057.37060 · doi:10.1143/JPSJ.73.327
[25]Bluman, G. W.; Kumei, S.: Symmetries and differential equations, Applied mathematical sciences 81 (1989) · Zbl 0698.35001
[26]Olver, P. J.: Applications of Lie groups to differential equations, Graduate texts in mathematics 107 (1993) · Zbl 0785.58003
[27]Ibragimov, N. H.: N.h.ibrahimovcrc handbook of Lie group analysis of differential equations, CRC handbook of Lie group analysis of differential equations 1 – 3 (1994 – 1996)
[28]Naz, R.; Mahomed, F. M.; Mason, D. P.: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl math comput 205, 212-230 (2008) · Zbl 1153.76051 · doi:10.1016/j.amc.2008.06.042
[29]Cheviakov, A. F.: Gem software package for computation of symmetries and conservation laws of differential equations, Comput phys commun 176, 48-61 (2007) · Zbl 1196.34045 · doi:10.1016/j.cpc.2006.08.001
[30]Kudryashov, N. A.: Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos soliton fract 24, 1217-1231 (2005) · Zbl 1069.35018 · doi:10.1016/j.chaos.2004.09.109
[31]Kudryashov, N. A.: Exact solitary waves of the Fisher equation, Phys lett A 342, 99-106 (2005) · Zbl 1222.35054 · doi:10.1016/j.physleta.2005.05.025
[32]Vitanov, N. K.: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of pdes with polynomial nonlinearity, Commun nonlinear sci numer simul 15, 2050-2060 (2010) · Zbl 1222.35062 · doi:10.1016/j.cnsns.2009.08.011
[33]Vitanov, N. K.; Dimitrova, Z. I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model pdes from ecology and population dynamics, Commun nonlinear sci numer simul 15, 2836-2845 (2010) · Zbl 1222.35201 · doi:10.1016/j.cnsns.2009.11.029
[34]Gradshteyn, I. S.; Ryzhik, I. M.: Table of integrals, series, and products, (2007)
[35]Leveque, R. J.: Numerical methods for conservation laws, (1992) · Zbl 0847.65053
[36]Newell, A. C.: The history of the soliton, J appl mech 50, 1127-1137 (1983) · Zbl 0553.76016 · doi:10.1115/1.3167195
[37]Mikhailov, A. V.; Shabat, A. B.; Yamilov, R. I.: On an extension of the module of invertible transformations, Sov math doklady (Sov math surv) 295, 288-291 (1987) · Zbl 0674.35072
[38]Mikhailov, A. V.; Shabat, A. B.; Yamilov, R. I.: Extension of the module of invertible transformations and classification of integrable systems, Commun math phys 115, 1-19 (1988) · Zbl 0659.35091 · doi:10.1007/BF01238850
[39]Kodama, Y.; Mikhailov, A. V.: Obstacles to asymptotic integrability, Algebraic aspects of integrability, 173-204 (1996) · Zbl 0867.35091
[40]Steudel, H.: Uber die zuordnung zwischen invarianzeigenschaften und erhaltungssatzen, Zeit naturforsch 17A, 129-132 (1962)
[41]Anco, S. C.; Bluman, G. W.: Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications, Eur J appl math 13, 545-566 (2002) · Zbl 1034.35070 · doi:10.1017/S095679250100465X
[42]Anthonyrajah, M.; Mason, D. P.: Conservation laws and invariant solutions in the fanno model for turbulent compressible flow, Math comput appl 15, 529-542 (2010)