zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Standing waves of nonlinear Schrödinger equations with the gauge field. (English) Zbl 1248.35193
Summary: We study standing waves for nonlinear Schrödinger equations with the gauge field. Some existence results of standing waves are established by applying variational methods to the functional which is obtained by representing the gauge field A μ in terms of complex scalar field ϕ. We also show that there exists no standing wave for certain range of parameters by establishing a new inequality of Sobolev type.
35Q55NLS-like (nonlinear Schrödinger) equations
35A15Variational methods (PDE)
35A01Existence problems for PDE: global existence, local existence, non-existence
[1]Ambrosetti, A.: On Schrödinger-Poisson systems, Milan J. Math. 76, 257-274 (2008) · Zbl 1181.35257 · doi:10.1007/s00032-008-0094-z
[2]Ambrosetti, A.; Rabinowitz, P. H.: Dual variational methods in critical point theory and applications, J. funct. Anal. 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[3]Benci, V.; Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. math. Phys. 14, No. 4, 409-420 (2002) · Zbl 1037.35075 · doi:10.1142/S0129055X02001168
[4]Berestycki, H.; Lions, P. -L.: Nonlinear scalar field equations, I. Existence of a ground state, Arch. ration. Mech. anal. 82, No. 4, 313-345 (1983) · Zbl 0533.35029
[5]Byeon, J.: Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. amer. Math. soc. 362, 1981-2001 (2010) · Zbl 1188.35082 · doi:10.1090/S0002-9947-09-04746-1
[6]D’aprile, T.; Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. roy. Soc. Edinburgh sect. A 134, No. 5, 893-906 (2004) · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[7]Dunne, G. V.: Self-dual Chern-Simons theories, (1995)
[8]Gilbarg, D.; Trudinger, N.: Elliptic partial differential equations of second order, Grundlehren math. Wiss. 224 (1983) · Zbl 0562.35001
[9]Huh, H.: Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity 22, No. 5, 967-974 (2009)
[10]Jackiw, R.; Pi, S. -Y.: Classical and quantal nonrelativistic Chern-Simons theory, Phys. rev. D 42, 3500-3513 (1990)
[11]Jackiw, R.; Pi, S. -Y.: Self-dual Chern-Simons solitons, Progr. theoret. Phys. suppl. 107, 1-40 (1992)
[12]Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. funct. Anal. 237, 655-674 (2006) · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005