zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. (English) Zbl 1248.93146
Summary: This paper proposes a novel fractional-order sliding mode approach for stabilization and synchronization of a class of fractional-order chaotic systems. Based on the fractional calculus, a stable integral type fractional-order sliding surface is introduced. Using the fractional Lyapunov stability theorem, a single sliding mode control law is proposed to ensure the existence of the sliding motion in finite time. The proposed control scheme is applied to stabilize/synchronize a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. Some numerical simulations are performed to confirm the theoretical results of the paper. It is worth to emphasize that the proposed fractional-order sliding mode controller can be applied to control a broad range of fractional-order dynamical systems.
MSC:
93D21Adaptive or robust stabilization
93C15Control systems governed by ODE
34D06Synchronization
37N35Dynamical systems in control
93B12Variable structure systems
References:
[1]Pourmahmood, M.; Khanmohammadi, S.; Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun nonlinear sci numer simulat 16, 2853-2868 (2011) · Zbl 1221.93131 · doi:10.1016/j.cnsns.2010.09.038
[2]Aghababa, M. P.; Khanmohammadi, S.; Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Appl math model 35, 3080-3091 (2011) · Zbl 1219.93023 · doi:10.1016/j.apm.2010.12.020
[3]Aghababa, M. P.; Aghababa, H. P.: Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters, Mech res commun 38, 500-505 (2011)
[4]Aghababa, M. P.: A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs, Chin phys B 20, 090505 (2011)
[5]Aghababa, M. P.; Aghababa, H. P.: Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties, Nonlinear dynam (2011)
[6]Müller, S.; Kästner, M.; Brummund, J.; Ulbricht, V.: A nonlinear fractional viscoelastic material model for polymers, Comput mater sci 50, 2938-2949 (2011)
[7]Cao, J.; Ma, C.; Jiang, Z.; Liu, S.: Nonlinear dynamic analysis of fractional order rub-impact rotor system, Commun nonlinear sci numer simulat 16, 1443-1463 (2011)
[8]Ezzat, M. A.: Theory of fractional order in generalized thermoelectric MHD, Appl math model 35, 4965-4978 (2011) · Zbl 1228.76189 · doi:10.1016/j.apm.2011.04.004
[9]Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of time fractional reaction – diffusion systems, J comput appl math 220, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[10]Ertürk, V. S.; Odibat, Z. M.; Momani, S.: An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells, Comput math appl 62, 996-1002 (2011) · Zbl 1228.92064 · doi:10.1016/j.camwa.2011.03.091
[11]Laskin, N.: Fractional market dynamics, Physica A 287, 482-492 (2000)
[12]Özalp, N.; Demirci, E.: A fractional order SEIR model with vertical transmission, Math comput model 54, 1-6 (2011) · Zbl 1225.34011 · doi:10.1016/j.mcm.2010.12.051
[13]Luo, Y.; Chen, Y. Q.; Pi, Y.: Experimental study of fractional order proportional derivative controller synthesis for fractional order systems, Mechatronics 21, 204-214 (2011)
[14]Ionescu, C.; Machado, J. T.; De Keyser, R.: Fractional-order impulse response of the respiratory system, Comput math appl. 62, 845-854 (2011) · Zbl 1228.65251 · doi:10.1016/j.camwa.2011.04.021
[15]Petràš, I.; Magin, R. L.: Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun nonlinear sci numer simulat 16, 4588-4595 (2011) · Zbl 1229.92043 · doi:10.1016/j.cnsns.2011.02.012
[16]Sabatier, J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.: A fractional order model for lead-acid battery crankability estimation, Commun nonlinear sci numer simulat 15, 1308-1317 (2010)
[17]Lu, J. G.; Chen, G.: A note on the fractional-order Chen system, Chaos soliton fract 27, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[18]Lu, J. G.: Chaotic dynamics of the fractional-order Lu system and its synchronization, Phys lett A 354, 305-311 (2006)
[19]Li, C.; Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Phys A: stat mech appl 341, 55-61 (2004)
[20]Lu, J. G.: Chaotic dynamics and synchronization of fractional-order arneodo’s systems, Chaos soliton fract 26, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[21]Yang, Q.; Zeng, C.: Chaos in fractional conjugate Lorenz system and its scaling attractors, Commun nonlinear sci numer simulat 15, 4041-4051 (2010) · Zbl 1222.37037 · doi:10.1016/j.cnsns.2010.02.005
[22]Wu, X.; Li, Ji.; Chen, Gu.: Chaos in the fractional order unified system and its synchronization, J Frank inst 345, 392-401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[23]Guo, L. J.: Chaotic dynamics and synchronization of fractional-order Genesio – Tesi systems, Chin phys B 14, 1517-1521 (2005)
[24]Zhu, H.; Zhou, S.; Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system, Chaos soliton fract 39, 1595-1603 (2009) · Zbl 1197.94233 · doi:10.1016/j.chaos.2007.06.082
[25]Ge, Z. -M.; Ou, C. -Y.: Chaos in a fractional order modified Duffing system, Chaos soliton fract 34, 262-291 (2007) · Zbl 1132.37324 · doi:10.1016/j.chaos.2005.11.059
[26]Wang, X. -Y.; He, Y. -J.; Wang, M. -J.: Chaos control of a fractional order modified coupled dynamos system, Nonlinear anal 71, 6126-6134 (2009) · Zbl 1187.34080 · doi:10.1016/j.na.2009.06.065
[27]Hu, J.; Han, Y.; Zhao, L.: Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems, Commun nonlinear sci numer simulat 15, 115-123 (2010) · Zbl 1221.37212 · doi:10.1016/j.cnsns.2009.03.017
[28]Peng, G.: Synchronization of fractional order chaotic systems, Phys lett A 363, 426-432 (2007) · Zbl 1197.37040 · doi:10.1016/j.physleta.2006.11.053
[29]Wang, J. -W.; Zhang, Y. -B.: Synchronization in coupled nonidentical incommensurate fractional-order systems, Phys lett A 374, 202-207 (2009)
[30]Pan, L.; Zhou, W.; Fang, J.; Li, D.: Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems, Commun nonlinear sci numer simulat 15, 3754-3762 (2010) · Zbl 1222.34063 · doi:10.1016/j.cnsns.2010.01.025
[31]Asheghan, M. M.; Beheshti, M. T. H.; Tavazoei, M. S.: Comments on ”synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control” [Commun nonlinear sci numer simulat 2010;15:3754 – 3762], Commun nonlinear sci numer simulat 16, 2656-2657 (2011) · Zbl 1222.34060 · doi:10.1016/j.cnsns.2010.08.032
[32]Lu, J. G.: Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal, Physica A 359, 107-118 (2006)
[33]Zhong, Q. -S.; Bao, J. -F.; Yu, Y. -B.; Liao, X. -F.: Impulsive control for fractional-order chaotic systems, Chin phys lett 25, 2812 (2008)
[34]Lin, T. -C.; Kuo, C. -H.: H synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach, ISA trans 50, 548-556 (2011)
[35]Aghababa MP. Comments on ”Hinfsynchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach” [ISA Trans 50 (2011) 548 – 556]. 2011. doi:10.1016/j.isatra.2011.10.011.
[36]Bhalekar, S.; Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control, Commun nonlinear sci numer simulat 15, 3536-3546 (2010) · Zbl 1222.94031 · doi:10.1016/j.cnsns.2009.12.016
[37]Pan, L.; Zhou, W.; Zhou, L. G.; Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems, Commun nonlinear sci numer simulat 16, 2628-2640 (2011) · Zbl 1221.37220 · doi:10.1016/j.cnsns.2010.09.016
[38]Penga, G.; Jianga, Y.; Chen, F.: Generalized projective synchronization of fractional order chaotic systems, Physica A 387, 3738-3746 (2008)
[39]Wang, S.; Yu, Y.; Diao, M.: Hybrid projective synchronization of chaotic fractional order systems with different dimensions, Physica A 389, 4981-4988 (2010)
[40]Chen, L.; Chaia, Y.; Wu, R.: Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems, Phys lett A 375, 2099-2110 (2011)
[41]Taghvafard, H.; Erjaee, G. H.: Phase and anti-phase synchronization of fractional order chaotic systems via active control, Commun nonlinear sci numer simulat 16, 4079-4088 (2011) · Zbl 1221.65320 · doi:10.1016/j.cnsns.2011.02.015
[42]Tavazoei, M. S.; Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller, Physica A 387, 57-70 (2008)
[43]Hosseinnia, S. H.; Ghaderi, R.; Ranjbar, A.; Mahmoudian, M.; Momani, S.: Sliding mode synchronization of an uncertain fractional order chaotic system, Comput math appl 59, 1637-1643 (2010) · Zbl 1189.34011 · doi:10.1016/j.camwa.2009.08.021
[44]Yin, C.; Zhonga, S. -M.; Chen, W. -F.: Design of sliding mode controller for a class of fractional-order chaotic systems, Commun nonlinear sci numer simulat 17, 356-366 (2012)
[45]Chen, D. -Y.; Liu, Y. -X.; Ma, X. -Y.; Zhang, R. -F.: Control of a class of fractional-order chaotic systems via sliding mode, Nonlinear dynam (2011)
[46]Aghababa MP. Comments on ”Design of sliding mode controller for a class of fractional-order chaotic systems” [Commun Nonlinear Sci Numer Simulat 17 (2012) 356 – 366]. Commun Nonlinear Sci Numer Simulat 2012;17:1485 – 8.
[47]Aghababa MP. Comments on ”Adaptive synchronization of fractional-order chaotic systems via a single driving variable” [Nonlinear Dyn (2011), doi:10.1007/s11071-011-9944-2]. Nonlinear Dynam 2011. doi:10.1007/s11071-011-0216-y.
[48]Podlubny, I.: Fractional differential equations, (1999)
[49]Matignon D. Stability results of fractional differential equations with applications to control processing. In: IEEE-SMC proceedings of the Computational engineering in systems and application multiconference, IMACS, Lille, France; 1996: p. 963 – 8.
[50]Li, Y.; Chen, Y. Q.; Podlubny, I.: Mittag – Leffler stability of fractional order nonlinear dynamic systems, Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[51]Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order, Electron trans numer anal 5, 1-6 (1997) · Zbl 0890.65071 · doi:emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[52]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor_corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[53]Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[54]Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J math anal appl 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[55]Utkin, V. I.: Sliding modes in control optimization, (1992)
[56]Polyakov, A.; Poznyak, A.: Lyapunov function design for finite-time convergence analysis: twisting controller for second-order sliding mode realization, Automatica 45, 444-448 (2009) · Zbl 1158.93401 · doi:10.1016/j.automatica.2008.07.013
[57]Orlov, Y.: C.edwardse.f.coletl.fridmanadvances in variable structure and sliding mode control, Extended invariance principle and other analysis tools for variable structure systems, 3-22 (2006)
[58]Chen, H. K.: Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, J sound vib 255, 719-740 (2002)