zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos generalized synchronization of an inertial tachometer with new Mathieu-Van der Pol systems as functional system by GYC partial region stability theory. (English) Zbl 1250.34044
The authors implement a form of generalised synchronisation of a pair of identical chaotic ODE systems. Generalised synchronisation means that there is a functional relationship between the variables of one system and the variables of the other system. The synchronisation is implemented by driving one system by a signal which depends on the state of the driving system, the state of the driven system, and the value of an “error” function which is determined by the form of the functional relationship that one is trying to obtain. The exposition of the theory is difficult to follow. The results are demonstrated on a pair of “inertial tachometer” systems, and a pair of four ODEs formed by coupling a Mathieu equation with a van der Pol equation.
MSC:
34D06Synchronization
34C15Nonlinear oscillations, coupled oscillators (ODE)
34C28Complex behavior, chaotic systems (ODE)
References:
[1]Moon, F. C.: Chaotic vibrations: an introduction for applied for scientists and engineers, (1987) · Zbl 0745.58003
[2]Thompson, J. M. T.; Stewart, H. B.: Nonlinear dynamics and chaos, (1986)
[3]Brockett TW. On conditions leading to chaos in feedback system. In: Proceedings of IEEE 21st conference on decision and control; 1982, p. 932 – 936.
[4]Holems, P.: Bifurcation and chaos is a simple feedback control system, Proceedings of IEEE 22nd conference on decision and control, 365-370 (1983)
[5]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic system, Phys. rev. Lett. 64, 821-824 (1990)
[6]Femat, R.; Perales, G. S.: On the chaos synchronization phenomenon, Phys lett 262, 50-60 (1999) · Zbl 0936.37010 · doi:10.1016/S0375-9601(99)00667-2
[7]Krawiecki, A.; Sukiennicki, A.: Generalizations of the concept of marginal synchronization of chaos, Chaos, solitons fract 11, No. 9, 1445-1458 (2000) · Zbl 0982.37022 · doi:10.1016/S0960-0779(99)00062-4
[8]Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos, solitons fract 12, 1199-1206 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8
[9]Femat, R.; Ramirez, J. A.; Anaya, G. F.: Adaptive synchronization of high-order chaotic systems: a feedback with low-order parameterization, Physica D 139, 231-246 (2000) · Zbl 0954.34037 · doi:10.1016/S0167-2789(99)00226-2
[10]Morgul, O.; Feki, M.: A chaotic masking scheme by using synchronized chaotic systems, Phys lett 251, 169-176 (1999)
[11]Chen, S.; Lu, J.: Synchronization of uncertain unified chaotic system via adaptive control, Chaos, solitons fract 14, No. 4, 643-647 (2002) · Zbl 1005.93020 · doi:10.1016/S0960-0779(02)00006-1
[12]Ju, H. Park: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos, solitons fract 26, 959-964 (2005) · Zbl 1093.93537 · doi:10.1016/j.chaos.2005.02.002
[13]Ju, H. Park: Adaptive synchronization of Rössler system with uncertain parameters, Chaos, solitons fract 25, 333-338 (2005) · Zbl 1125.93470 · doi:10.1016/j.chaos.2004.12.007
[14]Elabbasy, E. M.; Agiza, H. N.; El-Desoky, M. M.: Adaptive synchronization of a hyperchaotic system with uncertain parameter, Chaos, solitons fract 30, 1133-1142 (2006) · Zbl 1142.37325 · doi:10.1016/j.chaos.2005.09.047
[15]Ge, Z. -M.; Chen, C. -C.: Phase synchronization of coupled chaotic multiple time scales systems, Chaos, solitons fract 20, 639-647 (2004) · Zbl 1069.34056 · doi:10.1016/j.chaos.2003.08.001
[16]Ge, Z. -M.; Leu, W. -Y.: Chaos synchronization and parameter identification for identical system, Chaos, solitons fract 21, 1231-1247 (2004)
[17]Ge, Z. -M.; Leu, W. -Y.: Anti-control of chaos of two-degrees-of- freedom louderspeaker system and chaos synchronization of different order systems, Chaos, solitons fract 20, 503-521 (2004) · Zbl 1048.37077 · doi:10.1016/j.chaos.2003.07.001
[18]Ge, Z. -M.; Chen, Y. -S.: Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, solitons fract 21, 101-111 (2004) · Zbl 1048.37027 · doi:10.1016/j.chaos.2003.10.004
[19]Ge, Z. -M.; Yu, J. -K.: Pragmatical asymptotical stability theorem on partial region and for partial variable with applications to gyroscopic systems, Chinses J mech 16, No. 4, 179-187 (2000)
[20]Ge, Z. -M.; Chang, C. -M.: Chaos synchronization and parameters identification of single time scale brushless DC motors, Chaos, solitons fract 20, 883-903 (2004) · Zbl 1071.34048 · doi:10.1016/j.chaos.2003.10.005
[21]Ge, Zheng-Ming; Chen, Yen-Sheng: Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, solitons fract 21, 101 (2004) · Zbl 1048.37027 · doi:10.1016/j.chaos.2003.10.004
[22]Ge, Z. -M.; Yao, C. -W.; Chen, H. -K.: Stability on partial region in dynamics, J chinese soc mech eng 15, No. 2, 140-151 (1994)
[23]Ge, Z. -M.; Chen, H. -K.: Three asymptotical stability theorems on partial region with applications, Japanse J appl phys 37, 2762-2773 (1998)