zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Basins of attraction for several methods to find simple roots of nonlinear equations. (English) Zbl 1250.65067
Summary: There are many methods for solving a nonlinear algebraic equation. The methods are classified by the order, informational efficiency and efficiency index. Here, we consider other criteria, namely the basin of attraction of the method and its dependence on the order. We discuss several third and fourth order methods to find simple zeros. The relationship between the basins of attraction and the corresponding conjugacy maps is discussed in numerical experiments. The effect of the extraneous roots on the basins is also discussed.
65H05Single nonlinear equations (numerical methods)
[1]Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204
[2]B.D. Stewart, Attractor Basins of Various Root-finding Methods, M.S. Thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, June 2001.
[3]Scott, M.; Neta, B.; Chun, C.: Basin attractors for various methods, Appl. math. Comput. 218, 2584-2599 (2011)
[4]S. Amat, S. Busquier, S. Plaza, Iterative Root-finding Methods, Unpublished Report, 2004.
[5]Amat, S.; Busquier, S.; Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view, Scientia 10, 335 (2004) · Zbl 1137.37316
[6]Chun, C.; Lee, M. Y.; Neta, B.; Dz&breve, J.; Unić: On optimal fourth-order iterative methods free from second derivative and their dynamics, Appl. math. Comput. 218, 6427-6438 (2012)
[7]Neta, B.; Scott, M.; Chun, C.: Basin attractors for various methods for multiple roots, Appl. math. Comput. 218, 5043-5066 (2012)
[8]Jarratt, P.: Some fourth-order multipoint iterative methods for solving equations, Math. comput. 20, 434-437 (1966) · Zbl 0229.65049 · doi:10.2307/2003602
[9]Amat, S.; Busquier, S.; Plaza, S.: Dynamics of a family of third-order iterative methods that do not require using second derivatives, Appl. math. Comput. 154, 735-746 (2004) · Zbl 1057.65023 · doi:10.1016/S0096-3003(03)00747-1
[10]Amat, S.; Busquier, S.; Plaza, S.: Dynamics of the King and jarratt iterations, Aeq. math. 69, 212-2236 (2005) · Zbl 1068.30019 · doi:10.1007/s00010-004-2733-y
[11]Neta, B.; Chun, C.; Scott, M.: A note on the modified super-halley method, Appl. math. Comput. 218, 9575-9577 (2012)
[12]Vrscay, E. R.; Gilbert, W. J.: Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and könig rational iteration functions, Numer. math. 52, 1-16 (1988) · Zbl 0612.30025 · doi:10.1007/BF01401018
[13]Halley, E.: A new, exact and easy method of finding the roots of equations generally and that without any previous reduction, Philos. trans. Roy. soc. Lond. 18, 136-148 (1694)
[14]Gutiérrez, J. M.; Hernández, M. A.: An acceleration of Newton’s method: super-halley method, Appl. math. Comput. 117, 223-239 (2001) · Zbl 1023.65051 · doi:10.1016/S0096-3003(99)00175-7
[15]Chun, C.; Ham, Y.: Some second-derivative-free variants of super-halley method with fourth-order convergence, Appl. math. Comput. 195, 537-541 (2008) · Zbl 1132.65041 · doi:10.1016/j.amc.2007.05.003
[16]King, R. F.: A family of fourth-order methods for nonlinear equations, SIAM numer. Anal. 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[17]Jarratt, P.: Multipoint iterative methods for solving certain equations, Comput. J. 8, 398-400 (1966) · Zbl 0141.13404
[18]Ostrowski, A. M.: Solution of equations and systems of equations, (1973)