zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of hybrid fuzzy differential equations using improved predictor-corrector method. (English) Zbl 1250.65092
Summary: The hybrid fuzzy differential equations have a wide range of applications in science and engineering. This paper considers numerical solutions for hybrid fuzzy differential equations. The improved predictor-corrector method is adapted and modified for solving the hybrid fuzzy differential equations. The proposed algorithm is illustrated by numerical examples and the results obtained using the scheme presented here agree well with the analytical solutions. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated calculations of algorithm.
MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
34A07Fuzzy differential equations
68W30Symbolic computation and algebraic computation
65L06Multistep, Runge-Kutta, and extrapolation methods
Software:
Mathematica; Maple
References:
[1]Abbasbandy, S.; Allahviranloo, T.; Lopez-Pouso, O.; Nieto, J. J.: Numerical methods for fuzzy differential inclusions, Comput math appli 48, 1633-1641 (2004) · Zbl 1074.65072 · doi:10.1016/j.camwa.2004.03.009
[2]Allahviranloo, T.; Ahmadi, N.; Ahmadi, E.: Numerical solution of fuzzy differential equations by predictor – corrector method, Inf sci 177, 1633-1647 (2007) · Zbl 1183.65090 · doi:10.1016/j.ins.2006.09.015
[3]Allahviranloo, T.; Kiani, N. A.; Motamedi, N.: Solving fuzzy differential equations by differential transformation method, Inf sci 179, 956-966 (2009) · Zbl 1160.65322 · doi:10.1016/j.ins.2008.11.016
[4]Allahviranloo, T.; Ahmady, E.; Ahmady, N.: Nth-order fuzzy linear differential equations, Inf sci 178, 1309-1324 (2008) · Zbl 1134.65352 · doi:10.1016/j.ins.2007.10.013
[5]Allahviranloo, T.; Abbasbandy, S.; Ahmady, E.; Ahmady, N.: Improved predictor – corrector method for solving fuzzy initial value problems, Inf sci 179, 945-955 (2009) · Zbl 1165.65042 · doi:10.1016/j.ins.2008.11.030
[6]Barros, L. C.; Bassanezi, R. C.; Tonelli, P. A.: Fuzzy modelling in population dynamics, Ecol model 128, 27-33 (2000)
[7]Buckley, J. J.; Eslami, E.; Feuring, T.: Fuzzy mathematics in economics and engineering, (2002)
[8]Friedman, M.; Ma, M.; Kandel, A.: Numerical solution of fuzzy differential and integral equations, Fuzzy sets syst 106, 35-48 (1999) · Zbl 0931.65076 · doi:10.1016/S0165-0114(98)00355-8
[9]Jafari, H.; Saeidy, M.; Vahidi, J.: The homotopy analysis method for solving fuzzy system of linear equations, Int J fuzzy syst 11, No. 4, 308-313 (2009)
[10]Kaleva, O.: Fuzzy differential equations, Fuzzy sets syst 24, 301-317 (1987) · Zbl 0646.34019 · doi:10.1016/0165-0114(87)90029-7
[11]Khastan, A.; Nieto, J. J.: A boundary value problem for second order fuzzy differential equations, Nonlinear anal TMA 72, 3583-3593 (2010) · Zbl 1193.34004 · doi:10.1016/j.na.2009.12.038
[12]Kastan, A.; Ivaz, K.: Numerical solution of fuzzy differential equations by Nyström method, Chaos, solitons fract 41, 859-868 (2009) · Zbl 1198.65113 · doi:10.1016/j.chaos.2008.04.012
[13]Pederson, S.; Sambandham, M.: Numerical solution to hybrid fuzzy systems, Math comput model 45, 1133-1144 (2007) · Zbl 1123.65069 · doi:10.1016/j.mcm.2006.09.014
[14]Pederson, S.; Sambandham, M.: Numerical solution of hybrid fuzzy differential equation ivps by a characterization theorem, Inf sci 179, 319-328 (2009) · Zbl 1165.65041 · doi:10.1016/j.ins.2008.09.023
[15]Prakash, P.; Kalaiselvi, V.: Numerical solution of hybrid fuzzy differential equations by predictor – corrector method, Int J comput math 86, 121-134 (2009) · Zbl 1158.65049 · doi:10.1080/00207160802247620
[16]Seikkala, S.: On the fuzzy initial value problem, Fuzzy sets syst 24, 319-330 (1987) · Zbl 0643.34005 · doi:10.1016/0165-0114(87)90030-3
[17]Xu, J.; Liao, Z.; Nieto, J. J.: A class of linear differential dynamical systems with fuzzy matrices, J math anal appl 368, 54-68 (2010) · Zbl 1193.37025 · doi:10.1016/j.jmaa.2009.12.053