zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. (English) Zbl 1250.65099

An asymptotic stability analysis of linear scalar delay-differential equations of fractional order q(0,1) of type:

c D q y(t)=Ay(t)+By(t-τ),t>0,(1)

with the initial condition y(t)=ϕ(t), t[-τ,0], where τ>0 is a fixed time delay, ϕL ([-τ,0],) is a given initial data and c D q f is the Caputo fractional-order derivative of order q defined by c D q f(t)Γ(1-q) -1 0 t (t-s) -q f ' (s)ds· After introducing the standard definition of asymptotic stability i.e., that the solution of (1) tends to zero as t+ and a brief review of the well-known asymptotic stability results for q1, the authors derive some necessary algebraic conditions on the parameters A,B,τ,q for the asymptotic stability of the null solution. These results are obtained by combining analytical tools like Laplace transform with numerical approximation of integrals. Some stability regions in the space of parameter values are presented.

MSC:
65L07Numerical investigation of stability of solutions of ODE
65L03Functional-differential equations (numerical methods)
34K20Stability theory of functional-differential equations
34K28Numerical approximation of solutions of functional-differential equations
65L20Stability and convergence of numerical methods for ODE
34A08Fractional differential equations
34K06Linear functional-differential equations
References:
[1]Reyes-Melo, E.; Martinez-Vega, J.; Guerrero-Salazar, C.; Ortiz-Mendez, U.: Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials, Journal of applied polymer science 98, 923-935 (2005)
[2]Heymans, N.; Bauwens, J. -C.: Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica acta 33, 210-219 (1994)
[3]Schumer, R.; Benson, D.: Eulerian derivative of the fractional advection–dispersion equation, Journal of contaminant 48, 69-88 (2001)
[4]Henry, B.; Wearne, S.: Existence of Turing instabilities in a two-species fractional reaction–diffusion system, SIAM journal on applied mathematics 62, 870-887 (2002) · Zbl 1103.35047 · doi:10.1137/S0036139900375227
[5]Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics reports 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[6]Picozzi, S.; West, B. J.: Fractional Langevin model of memory in financial markets, Physical review E 66, 46-118 (2002)
[7]Glockle, W.; Nonnenmacher, T.: A fractional calculus approach to self-similar protein dynamics, Biophysical journal 68, 46-53 (1995)
[8]Song, L.; Xu, S.; Yang, J.: Dynamical models of happiness with fractional order, Communications in nonlinear science and numerical simulation 15, 616-628 (2010) · Zbl 1221.93234 · doi:10.1016/j.cnsns.2009.04.029
[9]Gu, R.; Xu, Y.: Chaos in a fractional-order dynamical model of love and its control, Advances in intelligent and soft computing 100, 349-356 (2011)
[10]Podlubny, I.: Fractional differential equations, (1999)
[11]Kilbas, A.; Srivastava, H.; Trujillo, J.: Theory and applications of fractional differential equations, (2006)
[12]Lakshmikantham, V.; Leela, S.; Devi, J. V.: Theory of fractional dynamic systems, (2009)
[13]Kaslik, E.; Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear analysis. Real world applications 13, 1489-1497 (2012)
[14]Hale, J. K.; Lunel, S. M. V.: Introduction to functional differential equations, (1993)
[15]Smith, H.: An introduction to delay differential equations with applications to the life sciences, (2011)
[16]Li, C.; Zhang, F.: A survey on the stability of fractional differential equations, The European physical journal special topics 193, 27-47 (2011)
[17]Lazarević, M. P.; Debeljković, D. L.: Robust finite time stability of nonlinear fractional order time delay systems, International journal of information and systems sciences 4, 301-315 (2008) · Zbl 1146.93024
[18]Zhang, X.: Some results of linear fractional order time-delay system, Applied mathematics and computation 197, 407-411 (2008) · Zbl 1138.34328 · doi:10.1016/j.amc.2007.07.069
[19]Bonnet, C.; Partington, J. R.: Stabilization of fractional exponential systems including delays, Kybernetika 37, 345-353 (2001)
[20]Hwang, C.; Cheng, Y. -C.: A numerical algorithm for stability testing of fractional delay systems, Automatica 42, 825-831 (2006) · Zbl 1137.93375 · doi:10.1016/j.automatica.2006.01.008
[21]Busłowicz, M.: Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of sciences 56, 319-324 (2008)
[22]Chen, Y.; Moore, K. L.: Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear dynamics 29, 191-200 (2002) · Zbl 1020.34064 · doi:10.1023/A:1016591006562
[23]Deng, W.; Li, C.; Lu, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dynamics 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[24]Diethelm, K.: The analysis of fractional differential equations, (2004)
[25]Gorenflo, R.; Mainardi, F.: Fractional calculus, integral and differential equations of fractional order, CISM courses and lecture notes 378, 223-276 (1997)
[26]Li, Y.; Chen, Y.; Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[27]Chen, J.; Lundberg, K. H.; Davison, D. E.; Bernstein, D. S.: The final value theorem revisited: infinite limits and irrational functions, IEEE control systems magazine 27, 97-99 (2007)
[28]Hartley, T.; Lorenzo, C.: Dynamics and control of initialized fractional-order systems, Nonlinear dynamics 29, 201-233 (2002) · Zbl 1021.93019 · doi:10.1023/A:1016534921583
[29]Lorenzo, C.; Hartley, T.: Initialization of fractional-order operators and fractional differential equations, Journal of computational and nonlinear dynamics 3, 021101:1-021101:9 (2008)
[30]T. Hartley, C. Lorenzo, The error incurred in using the caputo-derivative Laplace-transform, in: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, vol. 4, pp. 271–278.
[31]Kalmár-Nagy, T.: Stability analysis of delay-differential equations by the method of steps and inverse Laplace transform, Differential equations and dynamical systems 17, 185-200 (2009) · Zbl 1207.34091 · doi:10.1007/s12591-009-0014-x
[32]Elaydi, S. N.: An introduction to difference equations, (1996)
[33]Seybold, H.; Hilfer, R.: Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM journal on numerical analysis 47, 69-88 (2008) · Zbl 1190.65033 · doi:10.1137/070700280
[34]Mikhailov, A.: Method of harmonic analysis in control theory, Automatika i telemehanika 3, 27-81 (1938)