zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. (English) Zbl 1250.90066
Summary: Recently, some primal-dual algorithms have been proposed for solving a saddle-point problem, with particular applications in the area of total variation image restoration. This paper focuses on the convergence analysis of these primal-dual algorithms and shows that their involved parameters (including step sizes) can be significantly enlarged if some simple correction steps are supplemented. Some new primal-dual–based methods are thus proposed for solving the saddle-point problem. We show that these new methods are of the contraction type: the iterative sequences generated by these new methods are contractive with respect to the solution set of the saddle-point problem. The global convergence of these new methods thus can be obtained within the analytic framework of contraction-type methods. The novel study on these primal-dual algorithms from the perspective of contraction methods substantially simplifies existing convergence analysis. Finally, we show the efficiency of the new methods numerically.
MSC:
90C25Convex programming
65K10Optimization techniques (numerical methods)
65J22Inverse problems (numerical methods in abstract spaces)