zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the asymptotic stability of switched homogeneous systems. (English) Zbl 1250.93105
Summary: The stability of switched systems generated by the family of autonomous subsystems with homogeneous right-hand sides is investigated. It is assumed that for each subsystem the proper homogeneous Lyapunov function is constructed. The sufficient conditions of the existence of the common Lyapunov function providing global asymptotic stability of the zero solution for any admissible switching law are obtained. In the case where we can not guarantee the existence of a common Lyapunov function, the classes of switching signals are determined under which the zero solution is locally or globally asymptotically stable. It is proved that, for any given neighborhood of the origin, one can choose a number L>0 (dwell time) such that if intervals between consecutive switching times are not smaller than L then any solution of the considered system enters this neighborhood in finite time and remains within it thereafter.
MSC:
93D20Asymptotic stability of control systems
93C30Control systems governed by other functional relations
References:
[1]Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems, IEEE control syst. Mag. 19, No. 15, 59-70 (1999)
[2]Shorten, R.; Wirth, F.; Mason, O.; Wulf, K.; King, C.: Stability criteria for switched and hybrid systems, SIAM rev. 49, No. 4, 545-592 (2007) · Zbl 1127.93005 · doi:10.1137/05063516X
[3]Decarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems, Proc. IEEE 88, No. 7, 1069-1082 (2000)
[4]Grujic, Lj.T.; Martynyuk, A. A.; Ribbens-Pavella, M.: Large scale systems stability under structural and singular perturbations, (1987)
[5]Morse, A. S.: Supervisory control of families of linear set-point controllers–part 1: exact matching, IEEE trans. Automat. control 41, No. 10, 1413-1431 (1996) · Zbl 0872.93009 · doi:10.1109/9.539424
[6]H.E. Garcia, Control and supervision of a complex production process using hybrid systems techniques, in: First IEEE International Conference on Engineering of Complex Computer Systems, ICECCS’95, Ft. Lauderdale, Florida, USA, 1995, pp. 63–67.
[7]W.Y. Zang, S.B. Tor, G.A. Britton, A Hybrid intelligent system for sampling process planning in progressive die design, Singapore-MTI Alliance (SMA). Innovation in Manufacturing Systems and Technology (IMST) (1) 2004. http://hdl.handle.net/1721.1/3905.
[8], Handbook of hybrid systems control. Theory, tools, applications (2009)
[9]Kosov, A. A.; Vassilyev, S. N.; Zherlov, A. K.: Logic-based controllers for hybrid systems, Int. J. Hybrid syst. 4, No. 4, 271-299 (2004)
[10]Narendra, K. S.; Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE trans. Automat. control 39, No. 12, 2469-2471 (1994) · Zbl 0825.93668 · doi:10.1109/9.362846
[11]Liberzon, D.; Hespanha, J. P.; Morse, A. S.: Stability of switched systems: a Lie-algebraic condition, Systems control lett. 37, No. 3, 117-122 (1999) · Zbl 0948.93048 · doi:10.1016/S0167-6911(99)00012-2
[12]Vu, L.; Liberzon, D.: Common Lyapunov functions for families of commuting nonlinear systems, Systems control lett. 54, No. 5, 405-416 (2005) · Zbl 1129.34321 · doi:10.1016/j.sysconle.2004.09.006
[13]Kamenetskiy, V. A.; Pyatnitskiy, Ye.S.: An iterative method of Lyapunov function construction for differential inclusions, Systems control lett. 8, No. 5, 445-451 (1987) · Zbl 0628.34014 · doi:10.1016/0167-6911(87)90085-5
[14]Liberzon, D.: Lie algebras and stability of switched nonlinear systems, Unsolved problems in mathematical systems and control theory, 90-92 (2004)
[15]Zhai, G.; Hu, B.; Yasuda, K.; Michel, A. N.: Disturbance attenuation properties of time-controlled switched systems, J. franklin inst. 338, No. 7, 765-779 (2001) · Zbl 1022.93017 · doi:10.1016/S0016-0032(01)00030-8
[16]Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE trans. Automat. control 43, No. 4, 475-482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[17]Solo, V.: On the stability of slowly time-varying linear systems, Math. control signals systems 7, 331-350 (1994) · Zbl 0833.93047 · doi:10.1007/BF01211523
[18]Holcman, D.; Margaliot, M.: Stability analysis of second order switched homogeneous systems, SIAM J. Control optim. 41, 1609-1625 (2003) · Zbl 1032.37054 · doi:10.1137/S0363012901389354
[19]Y. Orlov, Finite time stability of homogeneous switched systems, in: 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2003, pp. 4271–4276.
[20]Zhang, Lijun; Liu, Sheng; Lan, Hai: On stability of switched homogeneous nonlinear systems, J. math. Anal. appl. 334, 414-430 (2007) · Zbl 1127.93046 · doi:10.1016/j.jmaa.2006.12.065
[21]Bhat, S. P.; Bernstein, D. S.: Finite-time stability of continuous autonomous systems, SIAM J. Control optim. 38, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[22]Bhat, S. P.; Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability, Math. control signals systems 17, 101-127 (2005) · Zbl 1110.34033 · doi:10.1007/s00498-005-0151-x
[23]Zubov, V. I.: Mathematical methods for the study of automatical control systems, (1962) · Zbl 0103.06001
[24]Hankey, A.; Stanley, H. E.: Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality, Phys. rev. B 6, No. 9, 3515-3542 (1972)
[25]Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field, Systems control lett. 19, No. 6, 467-473 (1992) · Zbl 0762.34032 · doi:10.1016/0167-6911(92)90078-7
[26]Bobylev, N. A.; Il’in, A. V.; Korovin, S. K.; Fomichev, V. V.: On the stability of families of dynamical systems, Differential equations 38, No. 4, 464-470 (2002) · Zbl 1033.34055 · doi:10.1023/A:1016347229334
[27]Tschernikow, S. N.: Lineare ungleichungen, (1971)
[28]Gantmacher, F. R.: Matrix theory, (1977)
[29]La Salle, J.; Lefschetz, S.: Stability by Lyapunov’s direct method, (1961) · Zbl 0098.06102
[30]Michel, A. N.; Hou, Ling: Stability results involving time-averaged Lyapunov function derivatives, Nonlinear anal. Hybrid syst. 3, 51-64 (2009) · Zbl 1157.93459 · doi:10.1016/j.nahs.2008.10.005