zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Probability-guaranteed H finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturations. (English) Zbl 1250.93121
Summary: In this paper, the probability-guaranteed H finite-horizon filtering problem is investigated for a class of nonlinear time-varying systems with uncertain parameters and sensor saturations. The system matrices are functions of mutually independent stochastic variables that obey uniform distributions over known finite ranges. Attention is focused on the construction of a time-varying filter such that the prescribed H performance requirement can be guaranteed with probability constraint. By using the Difference Linear Matrix Inequalities (DLMIs) approach, sufficient conditions are established to guarantee the desired performance of the designed finite-horizon filter. The time-varying filter gains can be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the semi-definite programming method. A computational algorithm is specifically developed for the addressed probability-guaranteed H finite-horizon filtering problem. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.
MSC:
93E11Filtering in stochastic control
93B36H -control
93C10Nonlinear control systems
References:
[1]Shi, P.; Boukas, E. K.; Agarwal, R. K.: Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters, IEEE trans. Automat. control 44, No. 8, 1592-1597 (1999) · Zbl 0986.93066 · doi:10.1109/9.780431
[2]Kallapur, A. G.; Petersen, I. R.; Anavatti, S. G.: A discrete-time robust extended Kalman filter for uncertain systems with sum quadratic constraints, IEEE trans. Automat. control 54, No. 4, 850-854 (2009)
[3]Yoon, M. G.; Ugrinovskii, V. A.; Petersen, I. R.: Robust finite horizon minimax filtering for discrete-time stochastic uncertain systems, Systems control lett. 52, No. 2, 99-112 (2004) · Zbl 1157.93531 · doi:10.1016/j.sysconle.2003.11.004
[4]Fridman, E.; Shaked, U.: An improved delay-dependent H filtering of linear neutral systems, IEEE trans. Signal process. 52, No. 3, 668-673 (2004)
[5]Nguang, S. K.; Shi, P.: Delay-dependent H filtering for uncertain time delay nonlinear systems: an LMI approach, IET control theory appl. 1, No. 1, 133-140 (2007)
[6]Wu, L.; Ho, D. W. C.: Fuzzy filter design for itĂ´ stochastic systems with application to sensor fault detection, IEEE trans. Fuzzy syst. 17, No. 1, 233-242 (2009)
[7]Yue, D.; Han, Q.: Robust H filter design of uncertain descriptor systems with discrete and distributed delays, IEEE trans. Signal process. 52, No. 11, 3200-3212 (2004)
[8]Bolzern, P.; Colaneri, P.; Nicolao, G. D.: On discrete-time H fixed-lag smoothing, IEEE trans. Signal process. 52, No. 1, 132-141 (2004)
[9]Ishihara, J. Y.; Terra, M. H.; Espinoza, B. M.: H filtering for rectangular discrete-time descriptor systems, Automatica 45, No. 7, 1743-1748 (2009) · Zbl 1184.93112 · doi:10.1016/j.automatica.2009.03.012
[10]Zhang, H.; Feng, G.; Duan, G.; Lu, X.: H filtering for multiple-time-delay measurements, IEEE trans. Signal process. 54, No. 5, 1681-1688 (2006)
[11]Cao, Y.; Lin, Z.; Chen, Ben M.: An output feedback H controller design for linear systems subject to sensor nonlinearities, IEEE trans. Circuits systems I 50, No. 7, 914-921 (2003)
[12]Niu, Y.; Ho, D. W. C.; Li, C.: Filtering for discrete fuzzy stochastic systems with sensor nonlinearities, IEEE trans. Fuzzy syst. 18, No. 5, 971-978 (2010)
[13]Yang, F.; Li, Y.: Set-membership filtering for systems with sensor saturation, Automatica 45, No. 8, 1896-1902 (2009) · Zbl 1185.93049 · doi:10.1016/j.automatica.2009.04.011
[14]Wang, Z.; Ho, D. W. C.; Dong, H.; Gao, H.: Robust H finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations, IEEE trans. Automat. control 55, No. 7, 1716-1722 (2010)
[15]I. Yaesh, S. Boyarski, U. Shaked, Probability-guaranteed robust Hperformance analysis, in: Processing of the 15th IFAC Congress, Barcelona, Jul. 2002.
[16]Boyarski, S.; Shaked, U.: Discrete-time H and H2 control with structured disturbances and probability-relaxed requirements, Internat. J. Control 77, No. 14, 1243-1259 (2004) · Zbl 1073.93017 · doi:10.1080/00207170412331305588
[17]Boyarski, S.; Shaked, U.: Robust H control design for best mean performance over an uncertain-parameters box, Systems control lett. 54, No. 6, 585-595 (2005) · Zbl 1129.93369 · doi:10.1016/j.sysconle.2004.10.008
[18]S. Boyarski, U. Shaked, Probability-guaranteed robust full-order and reduced-order H-filtering, In IFAC SSSC 2007, Foz do Iguassu.
[19]Yaesh, I.; Boyarski, S.; Shaked, U.: Probability-guaranteed robust H performance analysis and state-feedback design, Systems control lett. 48, No. 5, 351-364 (2003) · Zbl 1157.93373 · doi:10.1016/S0167-6911(02)00289-X
[20]Gershon, E.; Shaked, U.; Yaesh, I.: H control and estimation of state-multiplicative linear systems, (2005)
[21]Shen, B.; Wang, Z.; Liu, X.: Bounded H synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon, IEEE trans. Neural netw. 22, No. 1, 145-157 (2011)
[22]Khalil, H. K.: Nonlinear systems, (1996)
[23]Yaz, E.; Skelton, R. E.: Parametrization of all linear compensators for discrete-time stochastic parameter systems, Automatica 30, No. 6, 945-955 (1994) · Zbl 0799.93039 · doi:10.1016/0005-1098(94)90189-9
[24]Xiao, Y.; Cao, Y.; Lin, Z.: Robust filtering for discrete-time systems with saturation and its application to transmultiplexers, IEEE trans. Signal process. 52, No. 5, 1266-1277 (2004)