zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of an ecological model with impulsive control strategy and distributed time delay. (English) Zbl 1251.92049
Summary: In this paper, using the theories and methods of ecology and ordinary differential equations, an ecological model with an impulsive control strategy and a distributed time delay is defined. Using the theory of the impulsive equations, small-amplitude perturbations, and comparative techniques, a condition is identified which guarantees the global asymptotic stability of the prey-(x) and predator-(y) eradication periodic solutions. It is proved that the system is permanent. Furthermore, the influences of impulsive perturbations on the inherent oscillation are studied numerically, an oscillation which exhibits rich dynamics including period-halving bifurcation, chaotic narrow or wide windows, and chaotic crises. Computation of the largest Lyapunov exponent confirms the chaotic dynamic behavior of the model. All these results may be useful for study of the dynamic complexity of ecosystems.
34K45Functional-differential equations with impulses
34K35Functional-differential equations connected with control problems
37N25Dynamical systems in biology
37D45Strange attractors, chaotic dynamics
[1]Baek, H.: Dynamic complexities of a three-species beddington – deangelis system with impulsive control strategy, Acta appl. Math. 110, No. 1, 23-38 (2010) · Zbl 1194.34087 · doi:10.1007/s10440-008-9378-0
[2]Baek, H.: Species extinction and permanence of an impulsively controlled two-prey one-predator system with seasonal effects, Biosystems 98, 7-18 (2009)
[3]Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: asymptotic properties of the solutions, (1993)
[4]Beddington, J. R.: Mutual interference between parasites or predator and its effect on searching efficiency, J. anim. Ecol. 44, 331-340 (1975)
[5]Chen, C. W.: The stability of an oceanic structure with T-S fuzzy models, Math. comput. Simul. 80, 402-426 (2009) · Zbl 1174.86002 · doi:10.1016/j.matcom.2009.08.001
[6]Chen, C. W.: Modeling and control for nonlinear structural systems via a NN-based approach, Expert syst. Appl. 36, 4765-4772 (2009)
[7]Chen, C. W.; Chiang, W. L.; Hsiao, F. H.: Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems, Math. comput. Simul. 66, 523-537 (2004) · Zbl 1049.93556 · doi:10.1016/j.matcom.2004.04.001
[8]Deangelis, D. L.; Goldstein, R. A.; Neill, R. V.: A model for trophic interaction, Ecology 56, 881-892 (1975)
[9]Georgescu, P.; Zhang, H.; Chen, L. S.: Bifurcation of nontrivial periodic solution for an impulsively controlled pest management model, Appl. math. Comput. 202, 675-687 (2008) · Zbl 1151.34037 · doi:10.1016/j.amc.2008.03.012
[10]Georgescu, P.; Zhang, H.; Chen, L.: Bifurcation of nontrivial periodic solution for an impulsively controlled pest management model, Appl. math. Comput. 202, 675-687 (2008) · Zbl 1151.34037 · doi:10.1016/j.amc.2008.03.012
[11]Grond, F.; Diebner, H. H.; Sahle, S.; Mathias, A.: A robust, locally interpretable algorithm for Lyapunov exponents, Chaos solitons fract. 16, 841-852 (2003)
[12]Guo, H.; Chen, L.: The effects of impulsive harvest on a predator – prey system with distributed time delay, Commun. nonlinear sci. Numer. simul. 14, 2301-2309 (2009) · Zbl 1221.34218 · doi:10.1016/j.cnsns.2008.05.010
[13]Holt, R. D.: Predation, apparent competition, and the structure of prey communities, Theor. popul. Biol. 12, 197-229 (1977)
[14]Holt, R. D.: On the evolutionary stability of sink populations, Evol. ecol. 11, 723-731 (1997)
[15]Ji, C. Y.; Jiang, D. Q.; Shi, N. Z.: Analysis of a predator – prey model with modified leslies – gower and Holling-type II schemes with stochastic perturbation, J. math. Anal. appl. 359, 482-498 (2009) · Zbl 1190.34064 · doi:10.1016/j.jmaa.2009.05.039
[16]Jiao, J. J.; Chen, L. S.: A pest management SI model with biological and chemical control concern, Appl. math. Comput. 196, 1018-1026 (2006) · Zbl 1104.92054 · doi:10.1016/j.amc.2006.06.070
[17]Jiao, J.; Meng, X.; Chen, L.: A new stage structured predator – prey Gompertz model with time delay and impulsive perturbations, Appl. math. Comput. 196, 705-719 (2008) · Zbl 1131.92064 · doi:10.1016/j.amc.2007.07.020
[18]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. C.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[19]Li, Z. Q.; Wang, W. M.; Wang, H. L.: The dynamics of a beddington-type system with impulsive control strategy, Chaos solitons fract. 29, 1229-1239 (2006) · Zbl 1142.34305 · doi:10.1016/j.chaos.2005.08.195
[20]Lin, M. L.; Chen, C. W.: Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semi-arid landscape from satellite imagery, Eng. comput. 27, 5-19 (2010)
[21]Lv, S. J.; Zhao, M.: The dynamic complexity of a three-species food chain model, Chaos solitons fract. 37, 1469-1480 (2008) · Zbl 1142.92342 · doi:10.1016/j.chaos.2006.10.057
[22]Lv, S. J.; Zhao, M.: The dynamic complexity of a host – parasitoid model with a lower bound for the host, Chaos solitons fract. 36, 911-919 (2008)
[23]Masoller, C.; Sicaedi-Schifino, A. C.; Romanelli, L.: Characterization of strange attractors of the Lorenz model of the general circulation of the atmosphere, Chaos solitons fract. 6, 357-366 (1995) · Zbl 0905.58023 · doi:10.1016/0960-0779(95)80041-E
[24]Meng, X. Z.; Chen, L. S.: The dynamics of a new SIR epidemic model concerning pulse vaccination strategy, Appl. math. Comput. 197, 582-597 (2008) · Zbl 1131.92056 · doi:10.1016/j.amc.2007.07.083
[25]Meng, X.; Jiao, J.; Chen, L.: The dynamics of an age-structured predator – prey model with disturbing pulse and time delays, Nonlinear anal. 9, 547-561 (2008) · Zbl 1142.34054 · doi:10.1016/j.nonrwa.2006.12.001
[26]Pei, Y.; Liu, S.; Liu, C.; Chen, L.: The dynamics of an impulsive delay SI model with variable coefficients, Appl. math. Model. 33, 2766-2776 (2009) · Zbl 1205.34094 · doi:10.1016/j.apm.2008.08.011
[27]Rosenstein, M. T.; Collins, J. J.; De Luca, C. J.: A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65, 117-134 (1993) · Zbl 0779.58030 · doi:10.1016/0167-2789(93)90009-P
[28]Shi, R. Q.; Chen, L. S.: Staged-structured Lotka – volterva predator – prey models for pest management, Appl. math. Comput. 203, 258-265 (2008) · Zbl 1152.92029 · doi:10.1016/j.amc.2008.04.032
[29]Song, X.; Guo, H.: Extinction and permanence of a kind of pest – predator model with impulsive effect and infinite delay, J. korean math. Soc. 44, 327-342 (2007) · Zbl 1143.34052 · doi:10.4134/JKMS.2007.44.2.327
[30]Song, X. Y.; Li, Y. Y.: Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect, Chaos solitons fract. 33, 463-478 (2007) · Zbl 1136.34046 · doi:10.1016/j.chaos.2006.01.019
[31]Sportt, J. G.: Chaos and time-series analysis, (2003)
[32]Yeh, K.; Chen, C. Y.; Chen, C. W.: Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method, Appl. math. Comput. 205, 568-577 (2008) · Zbl 1152.93040 · doi:10.1016/j.amc.2008.05.104
[33]Yu, H. G.; Zhao, M.; Lv, S. J.; Zhu, L. L.: Dynamic complexity of a parasitoid – host – parasitoid ecological model, Chaos solitons fract. 39, 39-48 (2009) · Zbl 1197.37127 · doi:10.1016/j.chaos.2007.01.149
[34]Yu, H. G.; Zhong, S. M.; Agarwal, R. P.: Mathematics and dynamic analysis of an apparent competition community model with impulsive effect, Math. comput. Model. 52, 25-36 (2010) · Zbl 1201.34018 · doi:10.1016/j.mcm.2009.11.019
[35]Yu, H. G.; Zhong, S. M.; Agarwal, R. P.: Mathematics analysis and chaos in an ecological model with an impulsive control strategy, Commun. nonlinear sci. Numer. simul. 16, 776-786 (2011) · Zbl 1221.37207 · doi:10.1016/j.cnsns.2010.04.017
[36]Yu, H. G.; Zhong, S. M.; Ye, M.: Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay, Math. comput. Simul. 80, 619-632 (2009) · Zbl 1178.92058 · doi:10.1016/j.matcom.2009.09.013
[37]Zhang, Y. J.; Liu, B.; Chen, L. S.: Extinction and permanence of a two-prey one-predator system with impulsive effect, Math. med. Biol. 20, 309-325 (2003) · Zbl 1046.92051 · doi:10.1093/imammb/20.4.309
[38]Zhao, M.; Zhang, L.: Permanence and chaos in a host – parasitoid model with prolonged diapause for the host, Commun. nonlinear sci. Numer. simul. 14, 4197-4203 (2009)