zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Universal fuzzy controllers based on generalized T-S fuzzy models. (English) Zbl 1251.93069
Summary: This paper investigates the universal fuzzy control problem based on generalized T-S fuzzy models. The universal approximation capability of the generalized T-S fuzzy models is shown and an approach to robust controller design for general nonlinear systems based on this kind of generalized T-S fuzzy models is developed. The results of universal fuzzy controllers for two classes of nonlinear systems are then given, and constructive procedures to obtain the universal fuzzy controllers are also provided. An example is finally presented to show the effectiveness of our approach.
MSC:
93C42Fuzzy control systems
References:
[1]Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control, IEEE trans. Syst. man cybernet.: part B: cybernet. 15, No. 1, 116-132 (1985) · Zbl 0576.93021
[2]Tanaka, K.; Wang, H. O.: Fuzzy control systems design and analysis: A LMI approach, (2001)
[3]Tong, S.; Li, C.: Fuzzy adaptive observer backstepping control for MIMO nonlinear systems, Fuzzy sets syst. 160, No. 19, 2755-2775 (2009) · Zbl 1176.93049 · doi:10.1016/j.fss.2009.03.008
[4]Liu, J.; Wang, W.; Golnaraghi, F.; Kubica, E.: A novel fuzzy framework for nonlinear system control, Fuzzy sets syst. 161, No. 21, 2746-2759 (2010) · Zbl 1206.93065 · doi:10.1016/j.fss.2010.04.009
[5]Qiu, J.; Feng, G.; Yang, J.: A new design of delay-dependent robust H-infinity filtering for discrete-time T – S fuzzy systems with time-varying delay, IEEE trans. Fuzzy syst. 17, No. 5, 1044-1058 (2009)
[6]Qiu, J.; Feng, G.; Gao, H.: Fuzzy-model-based piecewise H-infinity static output feedback controller design for networked nonlinear systems, IEEE trans. Fuzzy syst. 18, No. 5, 919-934 (2010)
[7]Liu, Y.; Tong, S.; Li, T.: Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems, Fuzzy sets syst. 164, No. 1, 25-44 (2011) · Zbl 1217.93090 · doi:10.1016/j.fss.2010.09.002
[8]Leu, Y.: Mean-based fuzzy identifier and control of uncertain nonlinear systems, Fuzzy sets syst. 161, No. 6, 837-858 (2010) · Zbl 1217.93088 · doi:10.1016/j.fss.2009.09.013
[9]Dong, J.; Yang, G.: Dynamic output feedback H control synthesis for discrete-time T – S fuzzy systems via switching fuzzy controllers, Fuzzy sets syst. 160, No. 4, 482-499 (2009) · Zbl 1175.93122 · doi:10.1016/j.fss.2008.04.009
[10]Feng, G.: A survey on analysis and design of model-based fuzzy control systems, IEEE trans. Fuzzy syst. 14, No. 5, 676-697 (2006)
[11]Johansson, M.; Rantzer, A.; &angst, K. -E.; Rzén: Piecewise quadratic stability of fuzzy systems, IEEE trans.fuzzy syst. 7, No. 6, 713-722 (1999)
[12]Tanaka, K.; Ohtake, H.; Wang, H. O.: A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, IEEE trans. Fuzzy syst. 15, No. 3, 333-341 (2007)
[13]Chen, C. L.; Feng, G.; Sun, D.; Guan, X. P.: Output feedback control for discrete time fuzzy systems with application to chaos control, IEEE trans. Fuzzy syst. 13, No. 4, 531-543 (2005)
[14]Feng, G.: Analysis and synthesis of fuzzy control systems: A model-based approach, (2010)
[15]Buckley, J. J.: Universal fuzzy controllers, Automatica 28, No. 6, 1245-1248 (1992) · Zbl 0775.93133 · doi:10.1016/0005-1098(92)90068-Q
[16]Buckley, J. J.: Sugeno type controllers are universal controllers, Fuzzy sets syst. 53, No. 10, 299-303 (1993) · Zbl 0785.93057 · doi:10.1016/0165-0114(93)90401-3
[17]Buckley, J. J.; Hayashi, Y.: Fuzzy input – output controllers are universal approximators, Fuzzy sets syst. 58, No. 3, 273-278 (1993) · Zbl 0793.93078 · doi:10.1016/0165-0114(93)90503-A
[18]Ying, H.: General Takagi – sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters, Inf. sci. 108, No. 1 – 4, 91-107 (1998) · Zbl 0928.93034 · doi:10.1016/S0020-0255(97)10058-5
[19]Cao, S. G.; Rees, N. W.; Feng, G.: Universal fuzzy controllers for a class of nonlinear systems, Fuzzy sets syst. 122, No. 1, 117-123 (2001) · Zbl 0980.93038 · doi:10.1016/S0165-0114(00)00020-8
[20]Cao, S. G.; Rees, N. W.; Feng, G.: Mamdani-type fuzzy controllers are universal fuzzy controllers, Fuzzy sets syst. 123, No. 3, 359-367 (2001) · Zbl 0999.93040 · doi:10.1016/S0165-0114(01)00015-X
[21]Zeng, X. -J.; Singh, M. G.: Approximation theory of fuzzy systems — SISO case, IEEE trans. Fuzzy syst. 2, No. 2, 162-176 (1994)
[22]Zeng, X. -J.; Singh, M. G.: Approximation theory of fuzzy systems — MIMO case, IEEE trans. Fuzzy syst. 3, No. 2, 219-235 (1995)
[23]X.-J. Zeng, J.A. Keane, D. Wang, Fuzzy systems approach to approximation and stabilization of conventional affine nonlinear systems, in: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 2006, pp. 277 – 284.
[24]Hahn, W.: Stability of motion, (1968)
[25]Q. Gao, X.-J. Zeng, G. Feng, Y. Wang, T – S fuzzy systems approach to approximation and robust controller design for general nonlinear systems, in: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems, Taipei, Taiwan, 2011, pp. 1299 – 1304.
[26]Sontag, E. D.; Wang, Y.: On characterizations of the input-to-state stability property, Syst. control lett. 24, No. 5, 351-359 (1995) · Zbl 0877.93121 · doi:10.1016/0167-6911(94)00050-6
[27]Lin, Y. D.; Sontag, E. D.; Wang, Y.: A smooth converse Lyapunov theorem for robust stability, SIAM J. Control optim. 34, No. 1, 124-160 (1996) · Zbl 0856.93070 · doi:10.1137/S0363012993259981
[28]Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)
[29]A. Young, C.Y. Cao, N. Hovakimyan, E. Lavretsky, Control of a nonaffine double-pendulum system via dynamic inversion and time-scale separation, in: Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 2006, pp. 1820 – 1825.