zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some inequalities for positive linear maps. (English) Zbl 1252.15024

Let M n () be the algebra of all n×n complex matrices and let φ:M n ()M n () be a positive unital map. The authors prove that if AM n (), then

φ(A * A)-φ(A) * φ(A)inf z A-z·

Moreover, the authors give many surprisingly and strong consequences of this inequality. Also, they demonstrate the connection between this inequality and several old and new results.

15A45Miscellaneous inequalities involving matrices
15A60Applications of functional analysis to matrix theory
46L53Noncommutative probability and statistics
47A63Operator inequalities
47C15Operators in C * - or von Neumann algebras
[1]Bhatia, R.: Positive definite matrices, (2007)
[2]Kadison, R. V.: A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. math. 56, 494-503 (1952) · Zbl 0047.35703 · doi:10.2307/1969657
[3]Davis, C.: A Schwarz inequality for convex operator functions, Proc. amer. Math. soc. 8, 42-44 (1957) · Zbl 0080.10505 · doi:10.2307/2032808
[4]Bhatia, R.: Matrix analysis, (1996)
[5]Choi, M. D.: A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18, 565-574 (1974) · Zbl 0293.46043
[6]Bhatia, R.; Davis, C.: A better bound on the variance, Amer. math. Monthly 107, 353-357 (2000) · Zbl 1009.15009 · doi:10.2307/2589180
[7]Popoviciu, T.: Sur LES équations algébriques ayant toutes leurs racines réelles, Mathematica 9, 129-145 (1935) · Zbl 0014.10003
[8]Choi, M. D.: Some assorted inequalities for positive linear maps on C*-algebras, J. operator theory 4, 271-285 (1980) · Zbl 0511.46051
[9]Bhatia, R.; Semrl, P.: Orthogonality of matrices and some distance problems, Linear algebra appl. 287, 77-85 (1999) · Zbl 0937.15023 · doi:10.1016/S0024-3795(98)10134-9
[10]Stampfli, J. G.: The norm of a derivation, Pacific J. Math. 33, 737-747 (1970) · Zbl 0197.10501
[11]Audenaert, K. M. R.: Variance bounds with an application to norm bounds for commutators, Linear algebra appl. 432, 1126-1143 (2010) · Zbl 1194.60020 · doi:10.1016/j.laa.2009.10.022
[12]Björck, G.; Thomée, V.: A property of bounded normal operators in Hilbert space, Ark. mat. 4, 551-555 (1963) · Zbl 0194.15103 · doi:10.1007/BF02591603
[13]Garske, G.: An equality concerning the smallest disc that contains the spectrum of an operator, Proc. amer. Math. soc. 78, 529-532 (1980) · Zbl 0394.47007 · doi:10.2307/2042425
[14]Mirsky, L.: The spread of a matrix, Mathematika 3, 127-130 (1956) · Zbl 0073.00903 · doi:10.1112/S0025579300001790
[15]Rademacher, H.; Toeplitz, O.: The enjoyment of mathematics, (1990) · Zbl 0768.00002
[16]Mirsky, L.: Inequalities for normal and Hermitian matrices, Duke math. J. 24, 591-598 (1957) · Zbl 0081.25101 · doi:10.1215/S0012-7094-57-02467-5
[17]Barnes, E. R.; Hoffman, A. J.: Bounds for the spectrum of normal matrices, Linear algebra appl. 201, 79-90 (1994) · Zbl 0803.15016 · doi:10.1016/0024-3795(94)90106-6
[18]Jiang, E.; Zhan, X.: Lower bounds for the spread of a Hermitian matrix, Linear algebra appl. 256, 153-163 (1997) · Zbl 0886.15017 · doi:10.1016/S0024-3795(95)00785-7
[19]Wolkowicz, H.; Styan, G. P. H.: Bounds for eigenvalues using traces, Linear algebra appl. 29, 471-506 (1980) · Zbl 0435.15015 · doi:10.1016/0024-3795(80)90258-X
[20]Johnson, C. R.; Kumar, R.; Wolkowicz, H.: Lower bounds for the spread of a matrix, Linear algebra appl. 71, 161-173 (1985) · Zbl 0578.15013 · doi:10.1016/0024-3795(85)90244-7
[21]Merikoski, K. J.; Kumar, R.: Characterization and lower bounds for the spread of a normal matrix, Linear algebra appl. 364, 13-31 (2003) · Zbl 1021.15015 · doi:10.1016/S0024-3795(02)00534-7
[22]Böttcher, A.; Wenzel, D.: How big can the commutator of two matrices be and how big is it typically?, Linear algebra appl. 403, 216-228 (2005) · Zbl 1077.15020 · doi:10.1016/j.laa.2005.02.012
[23]Bhatia, R.; Kittaneh, F.: Commutators, pinchings, and spectral variation, Oper. matrices 2, 143-151 (2008) · Zbl 1147.15019
[24]Bloomfield, P.; Watson, G. S.: The inefficiency of least squares, Biometrika 62, 124-128 (1975) · Zbl 0308.62056 · doi:10.1093/biomet/62.1.121
[25]Ando, T.: Bloomfield – Watson – knott type inequalities for eigenvalues, Taiwanese J. Math. 5, 443-469 (2001) · Zbl 0994.15020
[26]Drury, S. W.; Liu, S.; Lu, C. -Y.; Puntanen, S.; Styan, G. P. H.: Some comments on several matrix inequalities with applications to canonical correlations: historical background and recent developments, Sankhya¯ ser. A 64, 453-507 (2002) · Zbl 1192.15007 · doi:http://sankhya.isical.ac.in/search/64a2/64a2029.html
[27]Bhatia, R.; Davis, C.: More operator versions of the Schwarz inequality, Commun. math. Phys. 215, 239-244 (2000) · Zbl 0984.46040 · doi:10.1007/s002200000289