zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new Jacobi operational matrix: an application for solving fractional differential equations. (English) Zbl 1252.34019
Summary: We derive the shifted Jacobi operational matrix (JOM) of fractional derivatives which is applied together with spectral tau method for numerical solution of general linear multi-term fractional differential equations (FDEs). A new approach implementing shifted Jacobi operational matrix in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of nonlinear multi-term FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The proposed methods are applied for solving linear and nonlinear multi-term FDEs subject to initial or boundary conditions, and the exact solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the new algorithm with those found by other known methods.
MSC:
34A45Theoretical approximation of solutions of ODE
34A08Fractional differential equations
References:
[1]Miller, K.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[2]Oldham, K. B.; Spanier, J.: Fractional calculus: theory and applications, differentiation and integration to arbitrary order, (1974)
[3]Podlubny, I.: Fractional differential equations, (1999)
[4]Amairi, M.; Aoun, M.; Najar, S.; Abdelkrim, M. N.: A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation, Appl. math. Comput. 217, 2162-2168 (2010)
[5]Deng, J.; Ma, L.: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Appl. math. Lett. 23, 676-680 (2010) · Zbl 1201.34008 · doi:10.1016/j.aml.2010.02.007
[6]Girejko, E.; Mozyrska, D.; Wyrwas, M.: A sufficient condition of viability for fractional differential equations with the Caputo derivative, J. math. Anal. appl. 382, No. 1, 146-154 (2011) · Zbl 1222.34007 · doi:10.1016/j.jmaa.2011.04.004
[7]Ray, S. S.; Bera, R. K.: Solution of an extraordinary differential equation by Adomian decomposition method, J. appl. Math. 4, 331-338 (2004) · Zbl 1080.65069 · doi:10.1155/S1110757X04311010
[8]Dehghan, M.; Manafian, J.; Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. methods partial diff. Eq. 26, 448-479 (2010) · Zbl 1185.65187 · doi:10.1002/num.20460
[9]Hashim, I.; Abdulaziz, O.; Momani, S.: Homotopy analysis method for fractional ivps, Commun. nonlinear sci. Numer. simul. 14, 674-684 (2009) · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014
[10]Odibat, Z.; Momani, S.; Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. math. Model. 34, 593-600 (2010) · Zbl 1185.65139 · doi:10.1016/j.apm.2009.06.025
[11]Yang, S.; Xiao, A.; Su, H.: Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. math. Appl. 60, 2871-2879 (2010) · Zbl 1207.65109 · doi:10.1016/j.camwa.2010.09.044
[12]Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid dynamics, (1989)
[13]Saadatmandi, A.; Dehghan, M.: A new operational matrix for solving fractional-order differential equations, Comput. math. Appl. 59, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[14]Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. math. Model. 35, 5662-5672 (2011) · Zbl 1228.65126 · doi:10.1016/j.apm.2011.05.011
[15]Bhrawy, A. H.; Alofi, A. S.; Ezz-Eldien, S. S.: A quadrature tau method for variable coefficients fractional differential equations, Appl. math. Lett. 24, 2146-2152 (2011)
[16]Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. math. Appl. 62, 2364-2373 (2011) · Zbl 1231.65126 · doi:10.1016/j.camwa.2011.07.024
[17]Ghoreishi, F.; Yazdani, S.: An extension of the spectral tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. math. Appl. 61, 30-43 (2011) · Zbl 1207.65108 · doi:10.1016/j.camwa.2010.10.027
[18]Vanani, S. K.; Aminataei, A.: Tau approximate solution of fractional partial differential equations, Comput. math. Appl. 62, 1075-1083 (2011) · Zbl 1228.65205 · doi:10.1016/j.camwa.2011.03.013
[19]Pedas, A.; Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations, J. comput. Appl. math. 235, 3502-3514 (2011) · Zbl 1217.65154 · doi:10.1016/j.cam.2010.10.054
[20]Esmaeili, S.; Shamsi, M.: A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. nonlinear sci. Numer. simul. 16, 3646-3654 (2011) · Zbl 1226.65062 · doi:10.1016/j.cnsns.2010.12.008
[21]Esmaeili, S.; Shamsi, M.; Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on müntz polynomials, Comput. math. Appl. 62, 918-929 (2011) · Zbl 1228.65132 · doi:10.1016/j.camwa.2011.04.023
[22]Szegö, G.: Orthogonal polynomials, Am. math. Soc. colloq. Pub. 23 (1985)
[23]Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.: Jacobi – Jacobi dual-Petrov – Galerkin method for third- and fifth- order differential equations, Math. comput. Model. 53, 1820-1832 (2011) · Zbl 1219.65077 · doi:10.1016/j.mcm.2011.01.002
[24]Doha, E. H.: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. phys. A math. Gen. 37, 657-675 (2004) · Zbl 1055.33007 · doi:10.1088/0305-4470/37/3/010
[25]Luke, Y.: The special functions and their approximations, The special functions and their approximations 2 (1969)
[26]Diethelm, K.; Ford, N. J.: Multi-order fractional differential equations and their numerical solutions, Appl. math. Comput. 154, 621-640 (2004) · Zbl 1060.65070 · doi:10.1016/S0096-3003(03)00739-2
[27]Mdallal, Q. M.; Syam, M. I.; Anwar, M. N.: A collocation-shooting method for solving fractional boundary value problems, Commun. nonlinear sci. Numer. simul. 15, 3814-3822 (2010) · Zbl 1222.65078 · doi:10.1016/j.cnsns.2010.01.020
[28]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor-corrector approach for the numerical solution of fractional differential equation, Nonlinear dyn. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[29]Jafari, H.; Das, S.; Tajadodi, H.: Solving a multi-order fractional differential equation using homotopy analysis method, J. King saud university sci. 23, 151-155 (2011)