zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. (English) Zbl 1252.65144
Summary: We study the initial-boundary value problem of the usual Rosenau-RLW equation by finite difference method. We design a conservative numerical scheme which preserves the original conservative properties for the equation. The scheme is three-level and linear-implicit. The unique solvability of numerical solutions has been shown. Priori estimate and second order convergence of the finite difference approximate solutions are discussed by discrete energy method. Numerical results demonstrate that the scheme is efficient and accurate.
MSC:
65M06Finite difference methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
References:
[1]Zuo, Jin-Ming; Zhang, Yao-Ming; Zhang, Tian-De: A new conservative difference scheme for the general rosenau-RLW equation, Boundary value prob. 2010, 13 (2010) · Zbl 1206.65216 · doi:10.1155/2010/516260
[2]Zhang, F.; Peréz-Ggarcı&acute, V. M.; A; Vázquez, L.: Numerical simulation of nonlinear Schrödinger system: a new conservative scheme, Appl. math. Comput. 71, 165-177 (1995)
[3]Zhang, F.; Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation, Appl. math. Comput. 45, 17-30 (1991) · Zbl 0732.65107 · doi:10.1016/0096-3003(91)90087-4
[4]Zhang, L.: A finite difference scheme for the usualized regularized long-wave equation, Appl. math. Comput. 168, 962-972 (2005) · Zbl 1080.65079 · doi:10.1016/j.amc.2004.09.027
[5]Wong, Y.; Chang, Q.; Gong, L.: An initial-boundary value problem of a nonlinear Klein-Gordon equation, Appl. math. Comput. 84, 77-93 (1997) · Zbl 0884.65091 · doi:10.1016/S0096-3003(96)00065-3
[6]Chang, Q. -S.; Jia, E.; Sun, W.: Difference schemes for solving the usualized nonlinear Schrödinger equation, J. comput. Phys. 148, 397-415 (1999) · Zbl 0923.65059 · doi:10.1006/jcph.1998.6120
[7]Wang, T. -C.; Zhang, L.: Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator, Appl. math. Comput. 182, 1780-1794 (2006) · Zbl 1161.65349 · doi:10.1016/j.amc.2006.06.015
[8]Wang, T. -C.; Guo, B.; Zhang, L.: New conservative difference schemes for a coupled nonlinear Schrödinger system, Appl. math. Comput. 217, 1604-1619 (2010) · Zbl 1205.65242 · doi:10.1016/j.amc.2009.07.040
[9]Chang, Q.; Guo, B.; Jiang, H.: Finite difference method for usualized Zakharov equations, Math. comput. 64, 537-553 (1995) · Zbl 0827.65138 · doi:10.2307/2153438
[10]Chang, Q. S.; Jiang, H.: A conservative scheme for the Zakharov equations, J. comput. Phys. 113, 309-319 (1994) · Zbl 0807.76050 · doi:10.1006/jcph.1994.1138
[11]Glassey, R. T.: Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. comput. 58, 83-102 (1992) · Zbl 0746.65066 · doi:10.2307/2153022
[12]Hu, J. S.; Zheng, K. L.: Two conservative difference schemes for the generalized rosenau equation, Boundary value prob. 2010, 18 (2010) · Zbl 1187.65090 · doi:10.1155/2010/543503
[13]Omrani, K.; Abidi, F.; Achouri, T.: A new conservative finite difference scheme for the rosenau equation, A new conservative finite difference scheme for the rosenau equation 201, 35-43 (2008) · Zbl 1156.65078 · doi:10.1016/j.amc.2007.11.039
[14]Zhang, L.: Convergence of a conservative difference scheme for a class of Klein – Gordon – Schrödinger equations in one space dimension, Appl. math. Comput. 163, 43-355 (2005) · Zbl 1080.65084 · doi:10.1016/j.amc.2004.02.010
[15]Zhou, Y.: Application of discrete functional analysis to the finite difference method, (1990)